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This research presents a novel methodological framework for applying the spatial
theory of voting to digital trace data obtained from social media platforms. Tradi-
tional data collection methods often have limitations in capturing individuals’ ide-
ologies and political preferences, which are essential for the empirical application of
this theory. On the other hand, recent advancements in online network ideological
scaling techniques have allowed researchers to estimate the ideological positions of
large samples of individuals based on their online activities. Nevertheless, there is
still a significant gap in the literature when it comes to applying the spatial theory
of voting to these data. This study aims to fill this gap by utilizing a novel dataset
containing the ideological positions of hundreds of thousands of Twitter users. The
study proposes a simultaneous model of party choice and abstention, wherein voters
are positioned in a multi-dimensional ideological space and vote probabilistically as
a function of their relative distance from the parties. The major contribution of
this paper is an innovative estimation approach based on Maximum Likelihood Es-
timation. By treating the use of aggregate data as a measurement error problem, I
demonstrate how to estimate this model without relying on individual-level choice
data, making this framework ideal for working with digital traces. The analysis
is divided into two parts. Firstly, the model is tested on the results of the 2022
national election in Italy. The results indicate that voters possess meaningful ide-
ologies, and economic issues constitute the most relevant ideological dimension in
explaining the election results. Secondly, by applying the spatial theory of voting
in the framework of a “multi-class classification problem with aggregate data”, the
study demonstrates how to predict individual-level voting behavior accurately.
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1 Introduction

Since the publication of An Economic Theory of Democracy by Anthony Downs in 1957,

the spatial theory of voting has been dominant in explaining voting behavior. Based on

a spatial conceptualization of politics, this theory states that it is possible to position

political preferences in an abstract (ideological) space and that citizens vote for the party

or policy alternative closest to them (Lipovetsky, 2022). The central idea is that a few

latent dimensions, such as left-right and liberal-conservative, can capture variation in

voters’ preferences across many issues (e.g., abortion, immigration, taxation). These

dimensions are often called ideologies and allow us to map individual preferences from a

high-dimensional issue space onto a lower-dimensional one. As a result, it is possible to

model voting behavior with just a few (usually one or two) ideological dimensions.

Traditionally, empirical applications of the spatial theory of voting have relied on

surveys that ask respondents to place parties and themselves on ideological or issue scales.1

The main drawback of this approach is that it can be problematic to uncover individuals’

ideological stances and voting choices via conventional data collection methods. The

topic’s sensitive nature implies that issues commonly linked to survey methodology, such

as response bias, are likely exacerbated. To address these limitations, this study proposes

a novel methodological framework that utilizes digital trace data.

Nowadays, more and more people spend time on social media platforms like Twitter,

Facebook, and Instagram. By interacting with them, they leave behind a “digital trace”

of all their activities, including information such as the people they follow or interact with

and their location. When this granular data is available for research, it offers valuable

information on human behavior that more traditional data collection methods do not

reveal. Platforms like Twitter are especially useful because they are often used to consume

political content, making the digital behavioral traces of its users a source of information

on public opinion on various topics of public discourse. Barberá (2015) was the first

to show that it is possible to recover the liberal or conservative attitudes of millions of

Twitter users in the US from their digital traces.

1An example is the following question from the “European Social Survey”: “In politics people sometimes talk of “left”
and “right”. Where would you place yourself on this scale, where 0 means the left and 10 means the right?”.
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Unlike more traditional data collection methods, this data originates from an unob-

trusive observation of individuals’ behavior, making it appealing for two reasons. The first

one is that it allows us to mine opinions on a massive scale. The second one is that, while

some individuals may not feel comfortable sharing their opinions or ideological positions

with an interviewer, they often unintentionally reveal this information as a by-product of

their online activity.

Our study utilizes a novel dataset containing the ideological positions of hundreds

of thousands of Twitter users obtained from Morales et al. (2022). To our knowledge,

this is the first study to apply the spatial theory of voting to digital trace data. Firstly,

we develop a model that simultaneously considers the choice among 𝐽 ≥ 2 parties and

abstention. Voters are positioned in a bi-dimensional (ideological) space and vote proba-

bilistically as a function of two components: (i) the relative weighted distance from each

party, where the weights reflect the salience of each dimension, and (ii) a residual that

captures the parties’ valence.2 Our analysis is then divided into two parts. In the first

part, we estimate the salience weight of each dimension based on the 2022 national elec-

tion in Italy. Our findings indicate that voters possess meaningful ideologies and that

the dimensions we consider are significant in explaining the voting choices of the Italian

electorate. Furthermore, this approach enables us to answer questions such as: “With

what probability will citizens with ideal points at 𝑥 vote for one candidate, the other,

or abstain?” (McKelvey, 1975). Then, we demonstrate how this model can accurately

predict individual voting behavior in a supervised learning framework.

The study is organized as follows. Section 2 reviews the relevant literature. Section

3 presents the model in its general form. Section 4 describes the data. Sections 5 and

6 present the empirical results of the inferential and predictive applications, respectively.

Section 7 concludes.

2The concept of valence is related to factors such as the party leader’s charisma or the party’s reputation that can affect
voting choices.
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2 Overview of spatial voting and other relevant literature

Hotelling (1929) and Smithies (1941) are traditionally accredited with the idea of spatial

competition. They studied the optimum location of firms in a linear space. In this space,

buyers of a single commodity are uniformly distributed along a single line of length 𝑙. The

sellers, 𝐴 and 𝐵, are free to move along this line, and everyone buys from the one closest

to them. Under these assumptions, Hotelling (1929) found that there is a tendency for

sellers to crowd together as closely as possible at the center of the distribution. If 𝐴 were

to settle at any point but the median, 𝐵 would fix his location between 𝐴 and the center,

as close to 𝐴 as possible, to maximize his profits. This incentive to “undercut” each other

to capture as many buyers as possible drives the firms toward the center. Hotelling (1929)

noted that the same tendency can be found in politics:

The competition for votes between the Republican and Democratic parties does

not lead to a clear drawing of issues, an adoption of two strongly contrasted posi-

tions between which the voter may choose. Instead, each party strives to make its

platform as much like the other’s as possible.

In An Economic Theory of Democracy (1957), A. Downs formalized this model in the

context of competition between political parties, establishing spatial theory as a concep-

tual tool. He assumed that voters are distributed along a single ideological dimension in

the usual left-to-right fashion and that they vote for the party closest to them. Moreover,

preferences are single-peaked and symmetric, and voters can choose to abstain if they are

too distant from a party. Under these conditions, and by allowing the distribution of

voters to vary along the scale, Downs finds that Hotelling’s conclusion that the parties in

a two-party system inevitably converge is no longer necessarily true. If the distribution is

approximately normal, parties will still move towards the median since they can attract

more votes in the center than they would lose at the extremes due to abstention. If, on

the other hand, the electorate is polarized, meaning that most voters occupy opposite

sides of the distribution and very few can be found in the center, the two parties will tend

to diverge toward the extremes and adopt very different ideologies. He concludes that the

political systems’ stability depends on the distribution of voters’ preferences, which is a
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variable in the long run.

This reasoning implies that stable government in a two-party democracy requires

a distribution of voters roughly approximating a normal curve. When such a dis-

tribution exists, the two parties come to resemble each other closely. Thus, when

one replaces the other in office, no drastic policy changes occur, and most voters

are located relatively close to the incumbent’s position no matter which party is in

power - (Downs, 1957).

The importance of the middle of the distribution, where the concept of middle in politics

is captured by the median (Hinich and Munger, 1997), was also recognized at around

the same time by Duncan Black, who derived the famous median voter theorem in The

Theory of Committees and Elections (1958).

The spatial models of voting that have emerged in economics and political science

are still based on the fundamental idea that voters are positioned along ideological di-

mensions. In such models, voters and parties are represented by points in an abstract

low-dimensional space. Downs’ left-right space is an example where there is one single

ideological dimension. Each voter has a utility function over this space, which decreases

with the distance between the position of the voter (the ideal point) and that of the party.3

The crucial idea is the following. Citizens tend to have preferences on a wide range of

issues (e.g., abortion, immigration, taxation), making the political space a complex, high-

dimensional issue space where each issue has its own dimension. However, in practice

“attitudes appear to be organized by positions along a small number of latent dimen-

sions” (Lipovetsky, 2022). We commonly refer to these latent dimensions as ideologies.

The classic left-right paradigm is an example.

The use of the terms left and right as a spatial metaphor in a political context dates

back to just after the French Revolution of 1789. At first, these terms were used to

describe the physical position of the groups that sat in the National Assembly. Over

time, they became associated with the political preferences of the groups themselves. The

ones on the left (Jacobins) were in favor of change, and those on the right (Girondins)
3There are many variants of the spatial theory of voting. In general, they can be differentiated between the classic Davis-

Hinich-Ordeshook (Davis et al., 1970) variant, in which the latent dimensions are issues, and the neo-dowsonian (Enelow
and Hinich, 1984) approach, where the latent dimensions are ideological. In this study, we only focus on the latter.
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defended the status quo (Hinich and Munger, 1997). Nowadays, our interpretation of this

dimension is not very far off. What makes this dimension ideological is that a voter’s

position on this scale is informative of her political preferences on various issues. In other

words, it captures variation in the issue space.

The fundamental consequence of the existence of ideologies is that just a few un-

derlying dimensions can explain the wide range of political preferences. This means it

is possible to map individual positions in the complex issue space onto an underlying

lower-dimensional ideological space, allowing us to model voting behavior with only a

few latent dimensions. The answer to the question of how many and which ideological

dimensions are needed to depict the issue space accurately depends on the political con-

text. For example, in current American politics, a single left-right or liberal-conservative

dimension may constrain political attitudes (Lipovetsky, 2022). In fact, “one of the un-

derappreciated aspects of contemporary political polarization has been how a diverse set

of policy conflicts — from abortion to gun control to immigration — have collapsed into

the dominant economic liberal-conservative dimension of American politics” (Hare and

Poole, 2013). Regarding the European political context, Bakker et al. (2012) shows with

Confirmatory Factor Analysis (CFA) that three distinct dimensions are present on the

supply side (i.e., in the competition among political parties) in most European countries.

However, the results change if one looks at the demand side (i.e., the orientation of voters).

Wheatley and Mendez (2021), for example, provides evidence that a three-dimensional

model does not fit the data best and that “different bundles of issues group together and

form dimensions in different ways in different countries”. The results also depend on the

statistical method employed to recover the dimensions underlying political preferences,

the so-called scaling procedure. In general, successful scaling techniques need to be able

to answer the following question: “How many latent dimensions of political difference do

we need to describe and analyze the political problem at hand without destroying ‘too

much’ information?” (Benoit and Laver, 2012).

This idea that preference variation in the issue space can be captured by a small

number of latent dimensions or ideologies is consistent with Converse’s (1964) belief system

theory and his notion of constraint. This concept describes the tendency of individuals
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to bundle many issue positions together as part of the same ideology. Therefore, one’s

ideology is informative of that person’s stance on many issues at once. According to Downs

(1957), the reason why voters bundle together policy preferences, or, in more general

terms, the reason why ideologies exist, can be explained by the presence of imperfect

information:

In a complex society the cost in time alone of comparing all the ways in which

the policies of competing parties differ is staggering. (...) if the voter discovers a

correlation between each party’s ideology and its policies, he can rationally vote by

comparing ideologies rather than policies. (...) Thus, lack of information creates a

demand for ideologies in the electorate.

Ideologies would not exist in a world where knowledge is perfect and information is cost-

less. If citizens were aware of the exact parties’ stances on all the issues they care about,

they could choose which party to vote for by simply comparing them. Ideologies become

helpful only when we assume that knowledge is imperfect and that information is costly.

Under these conditions, ideologies can be used as proxies of the parties’ differentiating

stands, thus saving voters the cost of informing themselves on every single issue. The

basic space theory thus posits that voters perceive parties as bundles of different issues

represented by points in the abstract space formed by the relevant ideological dimensions.

They then evaluate each platform by comparing it to their own ideal point, weighting each

dimension based on its relative importance (or salience).

The foundation of the empirical application of the spatial theory of voting lies in ran-

dom utility models (McFadden, 1974). It was Poole and Rosenthal who, for the first time,

combined the spatial theory of voting and random utility models to study parliamentary

roll call data. They developed NOMINATE (Poole and Rosenthal, 1985, 1991, 2000, 2011;

Poole, 2005; McCarty et al., 2016), a successful multidimensional scaling method to mea-

sure the political ideology of the members of US Congress across time. They demonstrated

that, despite its complexity, roll call voting can be modeled with just two dimensions:

one is either the usual left-right dimension on economic issues or a liberal-conservative

scale, and the other is related to salient social issues of the day.

With advances in computing power, more elaborate scaling techniques have been
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developed to estimate an Euclidean map that places voters and parties in the same ide-

ological space. Traditionally, these have been based on either roll call data or surveys

(Jacoby and Armstrong II, 2014; Hare and Poole, 2018; Hare et al., 2018; Struthers et al.,

2020), but scaling techniques that take advantage of digital trace data have also started

to appear recently. Barberá (2015) was the first to show that it is possible to recover the

liberal or conservative attitudes of millions of Twitter users in the US from their digital

traces. Morales et al. (2022) then applied these network ideological scaling methods to

the European context, showing that they work beyond one-dimensional opinion scales.

Many other studies have focused on estimating the features of voters’ utility function

(i.e., the salience of different dimensions) in the ideological space (Enelow and Hinich,

1985; Schofield et al., 1998; Dow, 1998; Quinn et al., 1999; Thurner and Eymann, 2000;

McAllister et al., 2015; Magni-Berton and Panel, 2018; Stiers, 2022; Lucas et al., 2023).

Recently, Danieli et al. (2022) has looked at the relevance of different factors - changes

in party positions, voter attributes, and voter priorities (i.e., the salience of different

dimensions) - in explaining the recent growth in electoral appeal of the populist radical

right in Europe. Their findings indicate that voters attach increasing importance to the

issues owned by these parties, which in turn explains their electoral success. Galasso

et al. (2024) has also investigated the role of (dis)trust in political institutions on the

support of populist parties, positing that “voters who no longer trust traditional parties

either abstain or vote for populist parties committing to specific (economic or identity)

policies, as long as the commitment credibility is strong enough”. Voters’ priorities have

also changed in the US, with voters attaching increasing importance to cultural issues

(Bonomi et al., 2021). Gennaioli and Tabellini (2023) investigate the role of identity in

shaping voters’ beliefs. Their findings indicate that shifting social identities are important

drivers of changes in voter demands, explaining also why cultural groups have become

more polarized on social policy and redistribution while opposite classes have become less

polarized on the latter.
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3 The spatial voting model formulated in the framework of ran-

dom utility models

Starting with the standard spatial model, we assume that there are 𝑁 voters in an economy

and that all voters participate. Let 𝑅𝐺 be the 𝐺-dimensional Euclidean space representing

the ideological space. Points in the space represent voters and parties, and each voter

is assumed to have a well-defined utility function over it. More precisely, each voter 𝑛

is represented by a point 𝒙𝒏 = [𝑥𝑛1, . . . , 𝑥𝑛𝐺]′ ∈ 𝑅𝐺 , where 𝑥𝑛𝑔 is the position of voter 𝑛

on the ideological dimension 𝑔. This is the point of the maximum utility of the voter,

and it is commonly referred to as her ideal point or bliss point. Each party 𝑗 , instead, is

represented by the point 𝒂 𝒋 = [𝑎 𝑗1, . . . , 𝑎 𝑗𝐺]′ ∈ 𝑅𝐺 , where 𝑎 𝑗𝑔 is the ideological position

of party 𝑗 on dimension 𝑔. Voters share the same choice set 𝐴 = {𝒂1, . . . , 𝒂𝑱}, with 𝐽 ≥ 2,

and they choose the alternative that provides the greatest utility. Therefore, voter 𝑛

chooses party 𝑘 if and only if 𝑈𝑛𝑘 > 𝑈𝑛 𝑗 ∀ 𝑗 ≠ 𝑘 (i.e., we assume sincere voting). Voters

base their evaluation on each party’s relative weighted distance from their ideal point,

with the weights reflecting the salience of each dimension. Specifically, we assume

𝑈𝑛 𝑗 = 𝛽 𝑗 −
𝐺∑
𝑔=1

𝛽𝑔 · 𝑑 (𝑥𝑛𝑔 − 𝑎 𝑗𝑔) + 𝜖𝑛 𝑗 , (1)

where 𝑑 (𝑥𝑛𝑔 −𝑎 𝑗𝑔) is a measure of distance between the agent and the party on dimension

𝑔. 𝛽𝑔 is a weighting constant that determines the salience of the 𝑔𝑡ℎ dimension. These

weights represent how agents trade off closeness on one dimension against distance on

another when evaluating different parties (Thurner, 2000). The weight’s sign is positive

when voters prefer parties close to them on a given dimension. The magnitude of the

weights, in absolute values, indicates the relative importance of different dimensions for

the voters. The larger the magnitude, the more important the dimension is. The standard

assumption is that these weights are identical across all voters (i.e., the electorate is

homogeneous). 𝛽 𝑗 is an alternative-specific constant; it captures the average effect of all

factors not included in the model on utility from party 𝑗 . We use it to capture the party’s

valence; i.e., factors such as the party leader’s charisma or the party’s reputation that can
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affect voters’ utility (see Danieli et al., 2022). Finally, 𝜖𝑛 𝑗 represents all the unobserved

factors that can affect utility but are not included in the model. Let

𝑉𝑛 𝑗 = 𝑉 (𝒙𝒏, 𝒂 𝒋) = 𝛽 𝑗 −
𝐺∑
𝑔=1

𝛽𝑔 · 𝑑 (𝑥𝑛𝑔 − 𝑎 𝑗𝑔).

Defined in this way, the function 𝑉𝑛 𝑗 is called the representative utility of the agent; it

relates the observed attributes of the alternatives and the decision maker to the decision

maker’s utility. We can then rewrite equation (1) as

𝑈𝑛 𝑗 = 𝑉𝑛 𝑗 + 𝜖𝑛 𝑗

It is important to note that the fact that 𝑉𝑛 𝑗 ≠ 𝑈𝑛 𝑗 , meaning that utility is a random

function, does not indicate a lack of information on the part of the decision maker. Instead,

it suggests that there are aspects of utility that we, as researchers, do not observe (see

Train, 2009).

Figure 1: Representative utility of an agent with position 𝒙𝒏 = [6, 6]′, assuming 𝛽1 =
𝛽2 = 1 and 𝛽 𝑗 = 0 ∀ 𝑗 .

(a) 𝑉 (𝒙𝒏, 𝒂 𝒋) = −(𝑥𝑛1 − 𝑎 𝑗1)2 − (𝑥𝑛2 − 𝑎 𝑗2)2
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Figure 1 (a) provides a visual representation of the representative utility 𝑉 (·) of an

agent with position 𝒙𝒏 = [6, 6]′ assuming that: 𝐺 = 2 (i.e. there are only two dimensions),

𝛽1 = 𝛽2 = 1 (i.e. both dimensions have the same salience), 𝛽 𝑗 = 0 ∀ 𝑗 (all parties have

equal valence), and 𝑑 (𝑥𝑛𝑔 − 𝑎 𝑗𝑔) = (𝑥𝑛𝑔 − 𝑎 𝑗𝑔)2 (i.e. standard Euclidean distance). Let

𝑔1 and 𝑔2 be the two dimensions of the ideological space. These define the 𝑔1𝑔2-plane,

the function 𝑉 (·) then maps different combinations of 𝑔1 and 𝑔2 onto a third dimension

(𝑉-axis) which tells us the corresponding representative utility of the agent.

𝑔1 and 𝑔2 could be any two dimensions. One can think, for example, of 𝑔1 as an

economic issues dimension and 𝑔2 as a social issues one. The only assumptions that they

need to satisfy are the following (see Hinich and Munger (1997)):

• Ordering: it must be possible to arrange parties and voters along each dimension,

from less to more.

• Continuity: Between the positions of any two voters or parties lies another feasible

position.

Given these assumptions, 𝑉 (·) is shaped like a circular paraboloid pointing upwards below

the 𝑔1𝑔2-plane. This reflects single-peaked and symmetric preferences. Agents have one

single point in the space that maximizes their utility, and as we move away from that

point, their representative utility function slopes downward. The maximizer is the point

[6, 6]′, which is exactly the agent’s ideal point. For all other points 𝒚 on the 𝑔1𝑔2-plane

𝑉 (𝒙𝒏, 𝒚) is negative and decreasing with the distance between 𝒙𝒏 and 𝒚. Figure 1 (b)

shows the indifference curves, these represent the sets of points in the two-dimensional

𝑔1𝑔2-plane that give agent 𝑛 the same level of (representative) utility. They capture the

concept of indifference. When dimensions have equal salience (i.e., when 𝛽1 = 𝛽2 = 1),

indifference curves correspond to all the points equidistant from 𝒙𝒏; in other words, indif-

ference curves are circles. For example, party 𝑗 with position 𝒂 𝒋 = [4, 4]′ would provide

the agent with (representative) utility 𝑉𝑛 𝑗 = −(6− 4)2 − (6− 4)2 = −8. Any party that lies

on the same indifference curve as party 𝒂 𝒋 (the red circle in the Figure) would provide

agent 𝑛 with the same level of utility. Finally, the set of all alternatives inside the indif-

ference curve on which 𝒂 𝒋 lies is called preferred-to-set; i.e., the set of all parties that are

closer to agent 𝑛’s ideal point and thus provide greater utility.
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Figure 2: Indifference curves of an agent with position 𝒙𝒏 = [6, 6]′, assuming 𝛽1 = 2 and
𝛽2 = 1 and 𝛽 𝑗 = 0 ∀ 𝑗 .
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Figure 2 shows what happens to the indifference curves when the salience of the

two ideological dimensions 𝑔1 and 𝑔2 is different (i.e., when 𝛽1 ≠ 𝛽2). For example, if

𝛽1 = 2 > 𝛽2 = 1, agents will give twice more weight to dimension 𝑔1 relative to dimension

𝑔2. This means, for example, that if a party moves one step away from the agent’s ideal

point on dimension 𝑔1, it would have to move two steps closer on dimension 𝑔2 to remain

on the same indifference curve. In general, indifference curves are “tall” when the hor-

izontal dimension is more salient than the vertical one and “wide” in the opposite case

(Hinich and Munger, 1997). Our goal in the first part of the study will be to empirically

estimate the salience of each dimension based on the results of the 2022 national election

in Italy.

3.1 Derivation of choice probabilities

Consider again equation (1) and let 𝑧𝑛 𝑗𝑔 = −𝑑 (𝑥𝑛𝑔 − 𝑎 𝑗𝑔). In other words, 𝑧𝑛 𝑗𝑔 is the

negative of the (observed) distance between agent 𝑛 and party 𝑗 on dimension 𝑔. This

allows us to define the distance between the agent and the party on each dimension as

a variable. In fact, “the structure of the multiattributive random utility model makes
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it possible to treat policy-specific distances to each of the parties as attributes of these

parties and to specify them as a generic variable” (Thurner and Eymann, 2000). Moreover,

assume that 𝐺 = 2 (i.e., the latent space is bi-dimensional) and that 𝑑 (𝑥𝑛𝑔 − 𝑎 𝑗𝑔) =

(𝑥𝑛𝑔 − 𝑎 𝑗𝑔)2 (i.e., standard Euclidean distance). Then,

𝑈𝑛 𝑗 = 𝑉𝑛 𝑗 + 𝜖𝑛 𝑗 = 𝛽 𝑗 + 𝛽1𝑧𝑛 𝑗1 + 𝛽2𝑧𝑛 𝑗2 + 𝜖𝑛 𝑗 (2)

Agent 𝑛 will choose party 𝑘 if the utility that she derives from this party is greater than

the utility that she would derive from any other party (i.e., if 𝑈𝑛𝑘 > 𝑈𝑛 𝑗 ∀ 𝑗 ≠ 𝑘). It is

easy to see then that the probability that agent 𝑛 chooses party 𝑘 is

𝑃𝑛𝑘 = 𝑃𝑟𝑜𝑏(𝑈𝑛𝑘 > 𝑈𝑛 𝑗 ; ∀ 𝑗 ≠ 𝑘)

= 𝑃𝑟𝑜𝑏(𝛽𝑘 + 𝛽1𝑧𝑛𝑘1 + 𝛽2𝑧𝑛𝑘2 + 𝜖𝑛𝑘 > 𝛽 𝑗 + 𝛽1𝑧𝑛 𝑗1 + 𝛽2𝑧𝑛 𝑗2 + 𝜖𝑛 𝑗 ; ∀ 𝑗 ≠ 𝑘)

= 𝑃𝑟𝑜𝑏(𝜖𝑛 𝑗 − 𝜖𝑛𝑘 < (𝛽𝑘 − 𝛽 𝑗 ) + 𝛽1(𝑧𝑛𝑘1 − 𝑧𝑛 𝑗1) + 𝛽2(𝑧𝑛𝑘2 − 𝑧𝑛 𝑗2); ∀ 𝑗 ≠ 𝑘)

= 𝑃𝑟𝑜𝑏(𝜂𝑘 𝑗 < 𝑉𝑛𝑘 −𝑉𝑛 𝑗 ; ∀ 𝑗 ≠ 𝑘)

(3)

where 𝜂𝑘 𝑗 = 𝜖𝑛 𝑗 − 𝜖𝑛𝑘 . The functional form of 𝑃𝑛𝑘 depends on the assumption we make

about the distribution of the error terms.

- 𝜖𝑛 𝑗 distributed as iid extreme value

Under this assumption, this becomes a standard discrete choice logit model. 𝜂𝑘 𝑗 is dis-

tributed logistically (see Hartman, 1982) and the choice probabilities have the following

closed-form expression (see Train, 2009):

𝑃𝑛𝑘 =
𝑒𝑉𝑛𝑘∑
𝑗 𝑒

𝑉𝑛 𝑗
∀𝑘 (4)

- 𝝐𝒏 distributed as normal

Consider the vector composed of each 𝜖𝑛 𝑗 , labeled 𝝐𝒏 = [𝜖𝑛1, . . . , 𝜖𝑛𝐽]′. 𝝐𝒏 is assumed to

be jointly normal with a mean vector of zero and covariance matrix
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Σ =


𝜎2

1 𝜎12 . . . 𝜎1𝐽

𝜎21 𝜎2
2 . . . 𝜎2𝐽

...
...

. . .
...

𝜎𝐽1 𝜎2
𝐽2 . . . 𝜎2

𝐽


.

Now let 𝜼𝒌 = [𝜂𝑘1, . . . , 𝜂𝑘 𝑗 , . . . , 𝜂𝑘𝐽]′ ∀ 𝑗 ≠ 𝑘, so that 𝜼𝒌 has dimension 𝐽 − 1. Since

the difference between two normals is normal, 𝜼𝒌 is also jointly normally distributed with

mean vector zero and covariance matrix

Ω𝑘 =


𝜎2

1 + 𝜎2
𝑘 − 2𝜎1𝑘 𝜎12 − 𝜎1𝑘 − 𝜎2𝑘 + 𝜎2

𝑘 . . . 𝜎1𝐽 − 𝜎1𝑘 − 𝜎𝐽𝑘 + 𝜎2
𝑘

𝜎21 − 𝜎2𝑘 − 𝜎1𝑘 + 𝜎2
𝑘 𝜎2

2 + 𝜎2
𝑘 − 2𝜎2𝑘 . . . 𝜎2𝐽 − 𝜎2𝑘 − 𝜎𝐽𝑘 + 𝜎2

𝑘
...

...
. . .

...

𝜎𝐽1 − 𝜎𝐽𝑘 − 𝜎1𝑘 + 𝜎2
𝑘 𝜎𝐽2 − 𝜎𝐽𝑘 − 𝜎2𝑘 + 𝜎2

𝑘 . . . 𝜎2
𝐽 + 𝜎2

𝑘 − 2𝜎𝐽𝑘


Therefore, the probability that voter 𝑛 chooses party 𝑘 becomes

𝑃𝑛𝑘 = 𝑃𝑟𝑜𝑏(𝜂𝑘 𝑗 < 𝑉𝑛𝑘−𝑉𝑛 𝑗 ) =
∫ 𝑉𝑛𝑘−𝑉𝑛1

−∞
· · ·

∫ 𝑉𝑛𝑘−𝑉𝑛𝐽

−∞
𝜙𝑘 (𝜂𝑘1, . . . , 𝜂𝑘𝐽) 𝑑𝜂𝑘𝐽 . . . 𝑑𝜂𝑘1 ∀ 𝑗 ≠ 𝑘

(5)

where 𝜙𝑘 is a multivariate normal frequency with mean 0 and variance-covariance matrix

Ω𝑘 . Unfortunately, this integral has no closed form; it must be evaluated numerically

through simulation.

3.2 Estimation

Let 𝜽 be the vector of unknown parameters (𝛽 𝑗 , 𝛽1, 𝛽2 and possibly the elements of Σ).

With data on the individual choices of the agents in our sample, we can estimate 𝜽 via

MLE by maximizing the following likelihood function

𝐿 (𝜽) =
𝑁∏
𝑛=1

𝐽∏
𝑘=1

𝑃
𝑦𝑛𝑘
𝑛𝑘 (6)

where 𝑦𝑛𝑘 = 1 if agent 𝑛 chooses party 𝑘 and 0 otherwise.
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4 Data

The data we exploit in this study is obtained from Morales et al. (2022). To estimate

the ideological positions of a sufficiently large Twitter population, Morales et al. (2022)

utilizes a method known as ideological embedding. This methodology leverages online

social network homophily (i.e., the assumption that people with similar attitudes follow

each other online) to produce interpretable scales of positions for large numbers of users

along dimensions of political issues and ideologies. This methodology was first developed

by Barberá (2015), who managed to recover the liberal-conservative ideology of US Twitter

users from their online network of followers and following. Morales et al. (2022) has

successfully shown that this method works beyond one-dimensional opinion scales, making

it more suitable for multidimensional European political settings. In practice, the method

works as follows. First, the set of Italian Members of Parliament (MPs) present on Twitter

and their followers is considered (filtering out inactive or bot accounts and considering only

those that follow at least 3 MPs and have at least 25 followers)4. This resulted in 265,230

followers. Then, this set is represented as an adjacency matrix 𝐴 ∈ {0, 1} |n. followers|×|𝑛. 𝑀𝑃𝑠 |

(MPs are listed in columns and followers in rows, with values of 0 and 1 representing

whether a user follows an MP), and Correspondence Analysis (CA) is applied to produce

a lower-dimensional spatial representation. This operation generates a multidimensional

latent position for each MP and the 265,230 followers in a low-dimensional space spanned

by the PCs. These positions in space help explain how followers follow MPs based on

proximity: the probability of one following the other is higher the closer they are. The

results indicate that the first two PCs hold relatively more importance in explaining

the topological network data. To understand to which political issues and ideologies

these latent dimensions are linked, Chapel Hill Expert Survey (CHES) data (Jolly et al.,

2022) is utilized. The CHES dataset includes party positions assessed by political science

experts, who are asked to place European political parties on scales from 0 to 10 across

51 dimensions of political issues and ideologies. By comparing the positions of political

parties according to the latent dimensions with their positions in the attitudinal CHES

4The data collection took place in the first half of 2020.
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dimensions, Morales et al. (2022) found that the first two PCs are related to the left-right

economic and anti-elite salience variables of the CHES, respectively. The first dimension is

the classic left-right scale on economic issues. For example, an agent on the economic left

may want the government to play a more active role in the economy than an agent on the

right. On the other hand, the second dimension is more related to social issues, measuring

the degree of anti-elitism. We can think of an agent that scores high on this dimension

as having, for example, less trust in institutions relative to an agent with a lower score.

The result is a dataset with the position of 265, 230 individuals in the ideological space

spanned by these two dimensions. This is shown in Figure 3. Table 1 instead presents

the descriptive statistics of the dataset.

Figure 3: Ideological space spanned by the left-right economic and anti-elite salience
dimensions.

M5S

FdI

PD

LN

FI

0.0

2.5

5.0

7.5

10.0

12.5

0.0 2.5 5.0 7.5 10.0

Left−Right Economic

A
n
ti
−

e
lit

e
 S

a
lie

n
c
e

1000

2000

3000

count

The Figure above shows the distribution of individuals and parties in the recovered
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bi-dimensional ideological space. The color of each point indicates the number of Twitter

users that can be found in that region of the space. The position of the parties instead is

based on CHES. On the x-axis, we have the left-right economic dimension, while on the

y-axis, we have the anti-elite salience one. The Figure shows that the distribution follows

approximately a V-shape, with individuals more extreme on the left-right scale being

relatively more anti-elite. Most individuals fall in the center-bottom of the distribution.

This is consistent with what the marginal distributions show. While the left-right eco-

nomic scale approximately follows a normal distribution, the other is strongly skewed to

the right, meaning most individuals have a low score on the anti-elite salience dimension.

Since CHES does not report minor parties’ location on the two dimensions of interest for

us, we will limit our analysis to the five major Italian parties: FdI, FI, LN, M5S, and PD.

Table 1: Descriptive statistics for left-right economic and anti-elite salience variables.

left-right anti-elite

count 265,230 265,230

mean 5.5881 2.9307

std 0.7247 1.8035

min 1.0395 0.0083

25% 5.2702 1.4721

50% 5.5329 2.4954

75% 5.9396 3.8580

max 12.1791 17.2923

Before we apply the spatial theory of voting to our dataset, it is essential to understand

better the individuals included in it. Two primary challenges require attention when

dealing with digital trace data. Firstly, our sample may be biased as Twitter users may

not be representative of the entire population, especially in terms of age and gender.

Secondly, the sample includes individuals who meet specific criteria (the ones we described

previously) regardless of nationality, not just Italian Twitter users. Therefore, it is crucial

to identify and isolate the subset of Italian users.
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To address the first challenge, we aim to estimate the age and gender of individuals

within our sample. This is essential to correct for potential sampling bias later on through

post-stratification techniques. We use the M3 system developed by Wang et al. (2019b).

This algorithm leverages data from the Twitter API, including users’ profile pictures, bios,

and screen names, to distinguish between individuals and organizations. The algorithm

then assigns individuals to age categories (“<=18”, “19-29”, “30-39”, and “>=40”) and

estimates their sex as male or female. Descriptive statistics for sex and age are presented

in Table 2. Notably, the table reveals an over-representation of males (64.71%) compared

to females.

Table 2: Descriptive statistics for sex, age and organization.

sex age organization
male female ≤ 18 19-29 30-39 ≥ 40 non-org is-org

Freq. 113,437 61,876 6,010 9,062 25,359 51,608 183,637 27,891

Percent 64.71% 35.29% 6.53% 9.85% 27.55% 56.07% 86.81% 13.19%

To address the second issue, we exploit the location information provided by the

users themselves. Twitter users can fill in their location details in the location field. We

fetch this data from the Twitter API. Then, we match the user’s self-reported location

with the actual locations in Italy using a deterministic algorithm. This algorithm uses

n-grams (i.e., groups of n adjacent words) present in the user’s self-reported location to

match them with real Italian locations, such as cities, provinces, regions, etc. These real

locations are retrieved from the GeoNames database.5 The distribution of Twitter users

in our sample across regions and provinces, as well as the average score on each dimension

at the province level, are shown in Figures 4 and 5.

5The code, as well as a more detailed explanation of how it works, can be found at the following link:
https://github.com/marvin-01/twitter_loctagger_it.
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Figure 4: Number of users by region and province.

(a) By region (b) By province

Figure 5: Mean of left-right and anti-elite by province.

(a) left-right (b) antielite

As expected, most users are located in the two major Italian municipalities: Rome

and Milan. Moreover, Northern provinces tend to have relatively higher scores on the

left-right economic dimension than the South. On the other hand, the distinction is less

clear regarding the anti-elite salience dimension. Finally, appendix A provides a validity

test that shows that the resulting dataset (the ideological position of Twitter users from

Morales et al. (2022) along with our demographic and location estimates) captures well the

spatial distribution of the left-right economic and anti-elite salience ideological dimensions

in Italy.
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5 Mapping voters’ preferences

We define the exact model specification as follows:

𝑈𝑛𝐹𝑑𝐼 = 𝛽𝐹𝑑𝐼 + 𝛽1𝑧𝑛𝐹𝑑𝐼1 + 𝛽2𝑧𝑛𝐹𝑑𝐼2 + 𝜖𝑛𝐹𝑑𝐼

𝑈𝑛𝐹𝐼 = 𝛽𝐹𝐼 + 𝛽1𝑧𝑛𝐹𝐼1 + 𝛽2𝑧𝑛𝐹𝐼2 + 𝜖𝑛𝐹𝐼

𝑈𝑛𝐿𝑁 = 𝛽𝐿𝑁 + 𝛽1𝑧𝑛𝐿𝑁1 + 𝛽2𝑧𝑛𝐿𝑁2 + 𝜖𝑛𝐿𝑁

𝑈𝑛𝑀5𝑆 = 𝛽𝑀5𝑆 + 𝛽1𝑧𝑛𝑀5𝑆1 + 𝛽2𝑧𝑛𝑀5𝑆2 + 𝜖𝑛𝑀5𝑆

𝑈𝑛𝑃𝐷 = 𝛽𝑃𝐷 + 𝛽1𝑧𝑛𝑃𝐷1 + 𝛽2𝑧𝑛𝑃𝐷2 + 𝜖𝑛𝑃𝐷

(7)

This is the same as (1), where 𝑧𝑛 𝑗1 and 𝑧𝑛 𝑗2 are the distances (in negative terms) of agent

𝑛 from party 𝑗 on the left-right economic and anti-elite salience dimensions, respectively,

∀ 𝑗 ∈ {FdI, FI, LN, M5S, PD}. Before estimating the model, we must consider a crucial

aspect of the behavioral decision-making process that affects the specification and estima-

tion of any discrete choice model. This aspect is that “Only differences in utility matter”

(Train, 2009).

Indeed, the absolute level of utility does not matter for the behavior of the decision

maker: increasing 𝑈𝑛 𝑗 by a constant 𝑘 ∀ 𝑗 would not change the choice of the decision-

maker.6 Therefore, only differences in the alternative-specific constants also matter. For

instance, if the difference between 𝛽𝐹𝑑𝐼 and 𝛽𝐹𝐼 is equal to 𝑑, increasing all alternative-

specific constants by 𝑘 would still generate the same difference of 𝑑 in the two constants.

This has repercussions also in terms of the estimation of the model.

Since there are infinite combinations of constants for which the differences are the

same, it is impossible to estimate the constants themselves. Instead, the researcher needs

to normalize the absolute level of the constants, which is commonly done by normalizing

one of them to zero. In our case, we arbitrarily set the alternative-specific constant for

the first choice, “Fratelli d’Italia”, to zero (i.e., 𝛽𝐹𝑑𝐼 = 0). Under this normalization, the

constant for any other party 𝛽 𝑗 can be interpreted as the average effect of unincluded
6Note that the same is true from our perspective as researchers. This is clear by looking at equation (3); there we had

that 𝑃𝑛𝑘 = 𝑃𝑟𝑜𝑏 (𝑈𝑛𝑘 > 𝑈𝑛 𝑗 ; ∀ 𝑗 ) = 𝑃𝑟𝑜𝑏 (𝑈𝑛𝑘 −𝑈𝑛 𝑗 > 0; ∀ 𝑗 ), which only depends on the difference in utility (see Train,
2009).
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factors on the utility of 𝑗 relative to FdI.

The major challenge in estimating this model with digital trace data is the lack of

information on individual-level choices, which standard discrete choice modeling relies

on for the estimation. Before showing how to estimate this model with aggregate data,

we present a simple exercise that relies on our ability to retrieve users’ political party

preferences from the information they share online. This is intended to show how digital

trace data alone can still provide valuable estimates of voters’ preferences. However, since

individual-level choices can be retrieved from online behavior only for a specific subset of

users, the results of this estimation cannot be extended to the overall population.

5.1 Individual data

This approach is the simplest one, and it relies on the fact that individuals may reveal

their political inclinations through their online activity. We are particularly interested in

the information in a user’s Twitter bio, as many people use this space to express their

support for a political party. Figure 6 is an example of how users may easily reveal their

political affiliation in their bio (in this case, the bio reads “I am a proud supporter of Lega

and Italian”). Our approach involves using this information to determine a user’s party

preference and treating it as their choice in the context of a discrete choice model.

Figure 6: Example of a Twitter bio showing party support.

We exploit text analysis to identify which individuals in our sample express political

preferences in their bio. We do so by matching specific keywords related to Italian parties

(such as “PD” and “leghista”7) to the bios of all users. We identify a sub-sample of 1, 686

individuals. We then go through the extracted sample and remove those that refer to a

party negatively or neutrally and keep only the ones that show support (or affiliation) to
7The complete list of keywords can be found in Table 9 in appendix B.1
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a party. We also remove those that show support for more than one party. This leaves

us with a final sub-sample of 1, 289 individuals. Since these users will likely differ from

the rest of the population, we will refer to them as the politically active ones. This subset

will only include individuals who actively participate in politics or feel a strong enough

connection to a party to communicate it to others actively. We can now estimate the

model on this sub-sample using standard discrete choice modeling software.8 The results

are shown in Table 3.

Table 3: Logit model of spatial party choice of politically active voters (standard errors
in parenthesis).

Variable 𝛽 t-ratio P-value
FI-constant −0.341 -1.44 0.15

(0.237)
LN-constant 1.39∗∗∗ 10.8 0.000

(0.128)
M5S-constant 1.67∗∗∗ 4.55 0.000

(0.367)
PD-constant −1.97∗∗∗ -5.71 0.000

(0.345)
Left-Right Economic 0.35∗∗∗ 13 0.000

(0.0269)
Anti-elite Salience 0.244∗∗∗ 10.6 0.000

(0.0231)
N. observations 1289

The Table above shows that the coefficients on both the left-right economic and the

anti-elite salience dimensions are positive and significant, which means that the utility

that politically active agents receive from parties significantly decreases when the rela-

tive distance on each dimension increases. Furthermore, the magnitude of the weights is

greater for the former dimension (0.35) than the latter one (0.244), meaning that politi-

cally active voters care relatively more about economic issues. Moreover, all the alterna-

tive specific constants are significant except for the one of Forza Italia. This means that

no other factors (except the weighted distance on the two dimensions) affect voters’ utility
8We used a software called Biogeme for Python; see Lancsar et al. (2017) for a review of standard statistical software

packages that can be used to estimate DCMs.
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from FI relative to FdI. In other words, politically active voters do not perceive signifi-

cant differences across the two parties regarding valence. On the other hand, unobserved

factors have a significantly positive average effect for LN and M5S and a significantly

negative effect for PD.

The advantage of this approach is that it is straightforward to implement since the

model can be estimated with standard libraries built for discrete choice modeling. How-

ever, it is essential to be cautious when interpreting these results. Since this approach

relies on information individuals voluntarily express in their online profiles regarding their

party preferences, extending these results to the broader population is impossible. People

who express political preferences online will likely differ from everybody else, especially

regarding party preferences. Still, we can gain valuable information regarding the prefer-

ences of those agents who are politically active.

To draw more general results, we need to find a way to take advantage of all the

information contained in our sample. Since we do not have data on individual party

preferences, we need to exploit estimation methods that rely on aggregate data. We

propose an approach that relies on Maximum Likelihood Estimation (MLE). We estimate

the model based on the results of the 2022 national election in Italy at the city level.

5.2 Aggregate data

5.2.1 Theoretical framework

Following Hartman (1982), we treat the use of aggregate data as a measurement error

problem. Consider our model again, but now assume that we only observe average city

estimates rather than individual values for each 𝑧𝑛 𝑗𝑔. In other words, for a voter 𝑛 who

lives in city 𝑐, what we observe is 𝑧̃𝑐 𝑗𝑔 = 𝑧𝑛 𝑗𝑔 − 𝑣𝑐 𝑗𝑔; i.e., the true distance of voter 𝑛 from

party 𝑗 observed with an error. 𝑧̃𝑐 𝑗𝑔 is the average distance (in negative terms) of all

voters in city 𝑐 from party 𝑗 . Therefore, we have that
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𝑈𝑛 𝑗 = 𝛽 𝑗 + 𝛽1𝑧𝑛 𝑗1 + 𝛽2𝑧𝑛 𝑗2 + 𝜖𝑛 𝑗

= 𝛽 𝑗 + 𝛽1( 𝑧̃𝑐 𝑗1 + 𝑣𝑐 𝑗1) + 𝛽2( 𝑧̃𝑐 𝑗2 + 𝑣𝑐 𝑗2) + 𝜖𝑛 𝑗

= 𝛽 𝑗 + 𝛽1 𝑧̃𝑐 𝑗1 + 𝛽2 𝑧̃𝑐 𝑗2 + (𝛽1𝑣𝑐 𝑗1 + 𝛽2𝑣𝑐 𝑗2 + 𝜖𝑛 𝑗 )

= 𝛽 𝑗 + 𝛽1 𝑧̃𝑐 𝑗1 + 𝛽2 𝑧̃𝑐 𝑗2 + 𝜖𝑛 𝑗

= 𝑉𝑛 𝑗 + 𝜖𝑛 𝑗 ,

(8)

where the new error term 𝜖𝑛 𝑗 derives from 𝜖𝑛 𝑗 as well as the measurement errors of

𝑧𝑛 𝑗1 and 𝑧𝑛 𝑗2, generated by using aggregate data instead of individual-level data. The

probability that voter 𝑛 votes for party 𝑘 then becomes

𝑃𝑛𝑘 = 𝑃𝑟𝑜𝑏(𝑈𝑛𝑘 > 𝑈𝑛 𝑗 ; ∀ 𝑗 ≠ 𝑘)

= 𝑃𝑟𝑜𝑏(𝛽𝑘 + 𝛽1 𝑧̃𝑐𝑘1 + 𝛽2 𝑧̃𝑐𝑘2 + 𝜖𝑛𝑘 > 𝛽 𝑗 + 𝛽1 𝑧̃𝑐 𝑗1 + 𝛽2 𝑧̃𝑐 𝑗2 + 𝜖𝑛 𝑗 ; 𝑗 ≠ 𝑘)

= 𝑃𝑟𝑜𝑏(𝜖𝑛 𝑗 − 𝜖𝑛𝑘 < 𝑉𝑛𝑘 −𝑉𝑛 𝑗 ; ∀ 𝑗 ≠ 𝑘)

= 𝑃𝑟𝑜𝑏(𝜂𝑘 𝑗 < 𝑉𝑛𝑘 −𝑉𝑛 𝑗 ; ∀ 𝑗 ≠ 𝑘)

(9)

where 𝜂𝑘 𝑗 = 𝜖𝑛 𝑗 − 𝜖𝑛𝑘 = (𝜖𝑛 𝑗 − 𝜖𝑛𝑘 ) + 𝛽1(𝑣𝑐 𝑗1 − 𝑣𝑐𝑘1) + 𝛽2(𝑣𝑐 𝑗2 − 𝑣𝑐𝑘2).

Assuming that 𝜖𝑛 𝑗 ∼ 𝑁 (0, 𝜎2
𝑗 ), 𝑣𝑐 𝑗1 ∼ 𝑁 (0, 𝜎2

𝑣, 𝑗1), 𝑣𝑐 𝑗2 ∼ 𝑁 (0, 𝜎2
𝑣, 𝑗2) and moreover

assuming that all covariances among measurement errors (𝑣𝑐 𝑗1 and 𝑣𝑐 𝑗2) and between

measurement errors and 𝜖𝑛 𝑗 are 0, we get that 𝜂𝑘 𝑗 ∼ 𝑀𝑁 (0, Ω̃𝑘 ). In particular (see

appendix B.2),

• 𝑉𝑎𝑟 (𝜂𝑘 𝑗 ) = 𝜎2
𝑗 + 𝜎2

𝑘 − 2𝜎𝑗 𝑘 +
∑2

𝑔=1 𝛽
2
𝑔 (𝜎2

𝑣, 𝑗𝑔 + 𝜎2
𝑣,𝑘𝑔) = 𝜃2

𝑘, 𝑗

• 𝐶𝑜𝑣(𝜂𝑘 𝑗 , 𝜂𝑘𝑖) = 𝜎𝑗𝑖 − 𝜎𝑗 𝑘 − 𝜎𝑖𝑘 + 𝜎2
𝑘 +

∑2
𝑔=1 𝛽

2
𝑔𝜎

2
𝑣,𝑘𝑔 = 𝜃𝑘, 𝑗𝑖

and

Ω̃𝑘 =


𝜃2
𝑘,1 𝜃𝑘,12 . . . 𝜃𝑘,1𝐽

𝜃𝑘,21 𝜃2
𝑘,2 . . . 𝜃𝑘,2𝐽

...
...

. . .
...

𝜃𝑘,𝐽1 𝜃𝑘,𝐽2 . . . 𝜃2
𝑘,𝐽


(10)
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Then, the probability that agent 𝑛 votes for party 𝑗 becomes

𝑃𝑛𝑘 = 𝑃𝑟𝑜𝑏(𝜂𝑘 𝑗 < 𝑉𝑛𝑘−𝑉𝑛 𝑗 ) =
∫ 𝑉𝑛𝑘−𝑉𝑛1

−∞
· · ·

∫ 𝑉𝑛𝑘−𝑉𝑛𝐽

−∞
𝜙𝑘 (𝜂𝑘1, . . . , 𝜂𝑘𝐽) 𝑑𝜂𝑘𝐽 . . . 𝑑𝜂𝑘1; ∀ 𝑗 ≠ 𝑘

(11)

Unfortunately, this integral has no closed form; we must evaluate it numerically

through simulation. By letting once again 𝜽 be the vector of unknown parameters of

the model (𝛽 𝑗 , 𝛽1, 𝛽2, and the elements of Ω̃𝑘), we can estimate it via MLE by maximiz-

ing the likelihood function defined as follows:

𝐿 (𝜽) =
∏
𝑐∈𝐶

𝐽∏
𝑘=1

𝑀𝑐𝑘∏
𝑛=1

𝑃
𝑦𝑛𝑘
𝑛𝑘 =

∏
𝑐∈𝐶

𝐽∏
𝑘=1

𝑃𝑀𝑐𝑘

𝑛𝑘 (12)

where 𝑀𝑐𝑘 is the number of people in city 𝑐 that voted for party 𝑘 and 𝐶 the set of cities.

Note that 𝑃𝑛𝑘 will be equal for all voters in the same city 𝑐. This allows us to estimate

the model’s parameters without individual-level choice data. The log-likelihood is

𝑙 (𝜽) =
∑
𝑐∈𝐶

𝐽∑
𝑘=1

𝑀𝑐𝑘 𝑙𝑛(𝑃𝑛𝑘 ) (13)

The intuition behind this approach is the following. Since we only have data on

election results at the city level, we need to somehow transform the unit of analysis from

the individual to the aggregate level. The idea is to construct a representative agent

for each Italian municipality. The representative agent for city 𝑐 is characterized by two

attributes: 𝑧̃𝑐 𝑗1 and 𝑧̃𝑐 𝑗2. These are the estimates of the (perceived) distances of the

representative agent of city 𝑐 from party 𝑗 on the two dimensions. They are constructed

as the weighted average of the distances of all agents in city 𝑐 from party 𝑗 on each

dimension (see appendix B.2 for a more detailed explanation). The uncertainty around

these estimates (𝜎𝑣,𝑛 𝑗1 and 𝜎𝑣,𝑛 𝑗2) depends on the variance of the distances of all the

inhabitants of the city 𝑐 from each party. Given our data, we can estimate the attributes

of the representative agents of 266 Italian municipalities.9 They range from relatively

small ones, with around 5, 034 inhabitants in the voting age, to municipalities with more

9These municipalities are the ones for which we have enough observations from all the population strata to estimate the
attributes of the representative agent accurately
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than 2 million. The spatial distribution of these Italian municipalities is shown in Figure

7.

Figure 7: Spatial distribution of the cities included in the sample.

It is important to stress that, although we are aggregating the data, we are still taking

into account the measurement error (𝜎𝑣,𝑛 𝑗1, 𝜎𝑣,𝑛 𝑗2 ∀ 𝑗). This allows the resulting estimator

to be consistent. If we used aggregate data (𝜎𝑣,𝑛 𝑗1 ≠ 0, 𝜎𝑣,𝑛 𝑗2 ≠ 0 ∀ 𝑗) with standard probit

techniques, we would ignore the presence of 𝛽2
1, 𝛽

2
2 and the measurement error variances in

the choice probabilities, and the resulting estimation of the model would be inconsistent.

5.2.2 Without abstention

To estimate the model, we start by making some simplifying assumptions. We assume

that 𝜎2
𝑗 = 𝜎2 and that 𝜎𝑗 𝑘 = 0 ∀ 𝑗 , 𝑘. In other words, we assume that the unobserved

factors have the same variance and are uncorrelated over alternatives. Hence, the error

for one alternative provides no information about the error for another alternative. This

assumption is appropriate if the utility is specified well enough that the remaining (unob-

served) portion of utility is essentially “white noise” (Train, 2009). The full Ω̃𝑘 (10) and

𝑃𝑛𝑘 (11) needed to be incorporated in the likelihood function (12) for 𝑘 ∈ {FdI, FI, LN,
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M5S, PD} are formally developed in appendix B.2. The results are shown in Table 4.

Table 4: Probit model of spatial party choice based on the 2022 Italian nation election -
without abstention (standard errors in parenthesis).

Variable 𝛽

FI-constant −0.752∗∗∗

(0.004)
LN-constant −0.403∗∗∗

(0.002)
M5S-constant 0.518∗∗∗

(0.003)
PD-constant −0.069∗∗∗

(0.004)
Left-Right Economic 0.099∗∗∗

(0.000)
Anti-elite Salience 0.03∗∗∗

(0.000)
N. observations 266

The Table above shows that the coefficients on both ideological dimensions are positive

and significant. This means that Italian voters’ utility from parties significantly decreases

when the relative distance on each dimension increases. Moreover, the fact that the

coefficient on the left-right economic dimension (0.09) is greater than that on the antielite-

salience one (0.03) means that individuals care more about the former dimension than

the latter. In terms of the alternative-specific constants, unlike for the politically active

population, they are all significant. Furthermore, the signs of the constants indicate that

unobserved factors have a positive effect only on the utility of M5S relative to FdI. Their

impact is negative for all the other parties.

5.2.3 With abstention

So far, we have assumed that all the individuals in our sample vote; however, individuals

may also decide to abstain. We model abstention under the assumption of expressive

voting: each individual votes if and only if the maximum of the expected utilities from

voting is greater than a fixed cost 𝑘 of voting. This multi-stage decision problem can be
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represented as the following decision tree.

Figure 8: Decision tree.

In the first step, the voter decides whether to abstain or participate. In the second,

she evaluates the available parties and determines the best alternative. However, the two

choices are not sequential; all the alternatives (five parties and the abstention option)

are evaluated simultaneously. This is the case because the attributes of the lower branch

alternatives, incorporated as expected maximum utility, influence the decision at the

upper branch. Each voter evaluates the utility she would get by choosing any available

party; if the utility she would get by choosing optimally is not greater than the cost of

voting 𝑘, she will abstain. Under these conditions, the choice probabilities become

𝑃𝐴𝑛 = 𝑃𝑟𝑜𝑏(𝑚𝑎𝑥{𝑈𝑛𝐹𝑑𝐼 ,𝑈𝑛𝐹𝐼 ,𝑈𝑛𝐿𝑁 ,𝑈𝑛𝑀5𝑆,𝑈𝑛𝑃𝐷} ≤ 𝑘)

= 𝑃𝑟𝑜𝑏(𝑈𝑛𝐹𝑑𝐼 ≤ 𝑘 ∩ 𝑈𝑛𝐹𝐼 ≤ 𝑘 ∩ 𝑈𝑛𝐿𝑁 ≤ 𝑘 ∩ 𝑈𝑛𝑀5𝑆 ≤ 𝑘 ∩ 𝑈𝑛𝑃𝐷 ≤ 𝑘)

= 𝑃𝑟𝑜𝑏(𝑈𝑛 𝑗 ≤ 𝑘; ∀ 𝑗 ∈ 𝐵)

= 𝑃𝑟𝑜𝑏(𝛽 𝑗 + 𝛽1 𝑧̃𝑐 𝑗1 + 𝛽2 𝑧̃𝑐 𝑗2 + 𝛽1𝑣𝑐 𝑗1 + 𝛽2𝑣𝑐 𝑗2 + 𝜖𝑛 𝑗 ≤ 𝑘; ∀ 𝑗 ∈ 𝐵)

= 𝑃𝑟𝑜𝑏(𝜖𝑛 𝑗 ≤ 𝑘 −𝑉𝑛 𝑗 ; ∀ 𝑗 ∈ 𝐵)

=
∫ 𝑘−𝑉𝑛𝐹𝑑𝐼

−∞
· · ·

∫ 𝑘−𝑉𝑛𝑃𝐷

−∞
𝜙𝜖𝑛 (𝜖𝑛𝐹𝑑𝐼 , · · · , 𝜖𝑛𝑃𝐷) 𝑑𝜖𝑛𝑃𝐷 , · · · , 𝑑𝜖𝑛𝐹𝑑𝐼
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where 𝜙𝜖𝑛 is distributed like a 𝑁 (0,



𝜃𝐹𝑑𝐼 0 0 0 0
0 𝜃𝐹𝐼 0 0 0
0 0 𝜃𝐿𝑁 0 0
0 0 0 𝜃𝑀5𝑆 0
0 0 0 0 𝜃𝑃𝐷


) and 𝜃 𝑗 = 𝜎2+𝛽2

1𝜎
2
𝑣,𝑛 𝑗1+

𝛽2
2𝜎

2
𝑣,𝑛 𝑗2. The results are shown in Table 5.

Table 5: Probit model of spatial party choice based on the 2022 Italian nation election -
with abstention (standard errors in parenthesis).

Variable 𝛽

FI-constant −0.511∗∗∗

(0.004)
LN-constant −0.479∗∗∗

(0.002)
M5S-constant 0.289∗∗∗

(0.003)
PD-constant 0.177∗∗∗

(0.004)
Left-Right Economic 0.082∗∗∗

(0.0004)
Anti-elite Salience 0.007∗∗∗

(0.0002)
N. observations 266

Again, all coefficients are significant, and voters assign positive weights to the two

ideological dimensions. However, adding the possibility for voters to abstain has two

relevant effects. The first one is that the difference in magnitude between the salience of

the two dimensions increases from 0.069 to 0.075, meaning that voters assign even more

weight to the left-right economic dimension relative to the anti-elite salience one. The

second effect is the coefficient for the constant for PD switches in sign (from -0.069 to

0.177). Finally, the cost of voting 𝑘 is estimated to be 0.46 (significant at the 1% level).

Overall, our results indicate that the spatial theory of voting is appropriate to explain

the results of the 2022 national election in Italy. Moreover, non-spatial, party-specific

biases and the two ideological dimensions are significant explanatory variables. Regarding

the relative importance of ideological dimensions for voters, we conclude that economic

issues are still the most important.
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6 Predicting individual voting behavior

This section investigates whether digital trace data can accurately predict individual vot-

ing behavior. We follow an approach similar to the one applied in supervised learning in

the framework of spatial voting theory. Supervised learning is a classic data mining prob-

lem that aims to predict an output value associated with a specific input vector. The idea

is to exploit a training set consisting of pairs of input vectors and output values to con-

struct a predictor, which we can then use to predict output values for new input vectors. In

our case, we want to construct a predictor that can predict the party choice of agents given

their position in the ideological space recovered by Morales et al. (2022). More specifically,

we define the input vector representing voter 𝑛 as 𝒙𝒏 = [𝑧𝑛𝐹𝑑𝐼1, 𝑧𝑛𝐹𝑑𝐼2, . . . , 𝑧𝑛𝑃𝐷1, 𝑧𝑛𝑃𝐷2]′.

In other words, each individual is represented by a vector of the relative distances be-

tween her and the parties on each dimension. The goal is to learn a predictor 𝑓 that

performs well on unseen test data drawn from the same source. In other words, “for a

set of test input vectors {𝑥𝑛} with unknown output values {𝑦𝑛}, we wish that 𝑓 (𝑥𝑛) = 𝑦𝑛

often” (Musicant et al., 2007b). Since the output data is nominal and there are more

than two classes, this task is commonly referred to as multi-class classification problem.

This particular problem at hand, however, has one relevant difference with respect to the

classic one. Instead of having a training set with individual output values for each input

vector, the output values are only available in aggregate across many input vectors. More

precisely, instead of knowing the voting behavior of each individual in our sample, we

only observe the output values (which, in our case, are the party shares) for multiple in-

dividuals at once (all those that live in the same city). This kind of problem is commonly

referred to as an “aggregate output learning problem”. Table 6 shows a sample dataset

for this framework.
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Table 6: Sample classification training and test sets. In the training set, classifications
are known only in aggregate.

Left-Right Economic Anti-elite Salience City Party Shares
5.5 2 Milan

FdI=33.7%, FI=9.5%, LN=12.9%
M5S=12.6%, PD=31.1%

4 3 Milan
5.2 3.5 Milan
2.1 6 Milan
1.8 1.2 Milan
6.8 3.5 Rome

FdI=39.8%, FI=7.1%, LN=6.8%,
M5S=19.1%, PD=27.3%

1.4 3.2 Rome
3 2.7 Rome
7 3.1 Rome

Left-Right Economic Anti-elite Salience City Party
5.1 2.3 Milan ?
7.2 3.4 Rome ?

More precisely, our training set consists of input vectors 𝒙𝒄𝒏, where 𝑐 indicates to

which city the input vector belongs and 𝑛 is the specific input vector within that city.

We assume that, for each city 𝑐, we observe the following set of aggregate output values:

𝑠𝑐 = {𝑠𝑐𝐹𝑑𝐼 , 𝑠𝑐𝐹𝐼 , 𝑠𝑐𝐿𝑁 , 𝑠𝑐𝑀5𝑆, 𝑠𝑐𝑃𝐷}, where 𝑠𝑐 𝑗 is the share of votes received by party 𝑗

in city 𝑐. Again, we consider the results of the 2022 national election in Italy. We wish to

train a predictor 𝑓 on this training data that can then operate on a single input vector

to produce a single output value.

We specify the relationship between the input vector and the output value as the

usual random utility model we have used so far, assuming all individuals participate. The

utility that agent 𝑛 derives from party 𝑗 is defined as

𝑈𝑞𝑛 𝑗 = 𝛽𝑞 𝑗 + 𝛽𝑞1𝑧𝑞,𝑛 𝑗1 + 𝛽𝑞2𝑧𝑞,𝑛 𝑗2 + 𝜖𝑞𝑛 𝑗

= 𝑉𝑞𝑛 𝑗 + 𝜖𝑞𝑛 𝑗

The only difference between this specification and the one used so far is that we

allow for the possibility that the model parameters vary across different collections of

31



the input vectors. Each collection 𝑞 represents a collection of cities. For example, we

can group cities at the province or region level, allowing the model parameters to differ

across different provinces or regions. If there is only one 𝑞 (i.e., we do not define groups

of cities), the specification falls back on (7). Moreover, instead of assuming that the

error terms are normally distributed, we assume that 𝜖𝑞𝑛 𝑗 is distributed i.i.d. extreme

value. Empirically, the results would not change if we assumed that the error terms were

independent and normally distributed with the same variance. However, this assumption

speeds up the estimation process since the choice probabilities have a closed form, so there

are no integrals to simulate. The probability that agent 𝑛 in collection 𝑞 votes for party

𝑘 is

𝑃𝑞𝑛𝑘 =
𝑒𝑉𝑞𝑛𝑘∑
𝑗 𝑒

𝑉𝑞𝑛 𝑗
; ∀𝑘

6.1 Training algorithm

The algorithm we use to train the model is based on the Method of Simulated Moments

(MSM). The idea is to minimize a certain distance between actual moments and simulated

moments with respect to the vector of unknown parameters

𝜽 = [𝛽𝑞𝐹𝐼 , 𝛽𝑞𝐿𝑁 , 𝛽𝑞𝑀5𝑆, 𝛽𝑞𝑃𝐷 , 𝛽𝑞1, 𝛽𝑞2]′ ∀𝑞

that generate the simulated data. We define the actual moments as the vote shares of

each party in a city. More specifically, we define the MSM estimator as the solution to

𝑚𝑖𝑛
𝜽

[𝒔 − 𝒔̂(𝜽)]′𝑊 [𝒔 − 𝒔̂(𝜽)] (14)

where 𝒔 is the vector of moments from the data and 𝒔̂ is the vector of simulated moments,

which depends on 𝜽. These contain the share of votes for each party in each city from

actual and simulated data, respectively. Finally, 𝑊 is the weighting matrix, where each

weight is proportional to the size of the voter population of the corresponding city.

In general, a MSM algorithm works by iteratively (1) guessing the vector of param-
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eters, (2) simulating the model based on the decision rules of the agents, (3) calculating

moments from the simulated model (i.e., 𝒔̂(𝜽)), and (4) comparing these to those from

the data (i.e., 𝒔). This procedure is repeated until the data and the model moments are as

close as possible. This can be done, for example, by defining a grid of values for the vector

of parameters based on the parameter space and iterating through all of them to find the

minimizer (i.e., the grid search method). In practice, however, this method is impractical

when the number of parameters rises beyond one or two. Instead, we rely on numerical

methods and exploit a global optimization routine called Differential Evolution (DE) to

find the values of the parameter vector that solve the minimization problem (14). This

algorithm works by initializing a population of candidate solutions and then iteratively

improving them by combining the current solutions; the best solution is chosen based on

a condition. Conceptually, the process is the same as the grid search method, but it is

not as time-consuming as the exhaustive search of the parameter space required by the

latter. In practice, the simulation step (2) works as follows. After having set the vector

of unknown parameters 𝜽 to a specific value 𝜽, we simulate the choice that each individ-

ual would make given these parameters. In particular, for each agent 𝑛, we compute the

probability 𝑃𝑞𝑛 𝑗 (𝜽) that she votes for each party 𝑗 ∈ {FdI, FI, LN, M5S, PD}. Assuming a

representative sample, the percentage of people in each city 𝑐 (which belongs to collection

𝑞) that vote for party 𝑗 could be computed as

𝑠̂𝑞𝑐 𝑗 (𝜽) =
∑

𝑛 𝑃𝑞𝑛 𝑗

𝑁𝑞𝑐
;

i.e., by taking the average of the individual probabilities of voting for party 𝑗 across all

agents that live in the city 𝑐. However, we need to account for sampling bias. Therefore,

instead of computing the predicted share of votes for each party based on the equation

above, we compute it as

𝑠̂𝑞𝑐 𝑗 (𝜽) =
∑
𝑚∈𝑀

𝑁𝑞𝑐𝑚

𝑁𝑞𝑐

∑
𝑛 𝑃𝑞𝑛 𝑗

𝑁𝑞𝑐𝑚
,

where 𝑀 is the set of population categories10 and 𝑁𝑞𝑐𝑚 is the number of people in the city

10In our data, we have estimated the gender and age of each Twitter user. We have three categories for age (19−29, 30−39, ≥
40) and two categories for gender (male and female), therefore giving us six possible categories.
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𝑐 (of collection 𝑞) that belong to the stratum 𝑚 of the population. In other words, we

first predict the percentage of votes party 𝑗 would receive from agents in each category

𝑚 of the population and then aggregate the results, giving a weight to each category that

reflects their actual prevalence in the population.

6.2 Testing

We train the model based on the results of the 2022 national election in Italy. Since we

do not know the voting choices of the individuals in our sample, to test the performance

of this model in predicting individual-level party choices we rely on the sub-sample of the

politically active individuals. We have already estimated the individual party preferences

for these users in the previous section. The results are shown in Figure 9. We tested

the model’s performance for different sets of 𝑞, i.e., for different collections of cities. In

particular, we tested the model’s performance while allowing the model parameters to vary

at the city or region level or not at all. In our case, the model had the best performance

when the model parameters were not allowed to vary. Therefore, we only provide the

results for this case.

Overall, the model has an accuracy (computed as the number of correct predictions

over all the predictions) of 69.45%. The accuracy increases to 93.16% if we group all right-

wing parties into the same category. This means that the model can classify correctly

93.16% of politically active users in either one of the following categories: M5S, PD, and

Right-Wing coalition.

Table 7 instead reports the precision and recall by class. Precision for a given class

in multi-class classification is computed as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑗 =
𝑇𝑃 𝑗

𝑇𝑃 𝑗 + 𝐹𝑃 𝑗

where 𝑇𝑃 𝑗 is the number of true positives and 𝐹𝑃 𝑗 the number of false positives of class

𝑗 . Recall instead is computed as

𝑅𝑒𝑐𝑎𝑙𝑙 𝑗 =
𝑇𝑃 𝑗

𝑇𝑃 𝑗 + 𝐹𝑁 𝑗
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Figure 9: Observed and predicted choice of politically active voters.
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where 𝐹𝑁 𝑗 is the number of false negatives for class 𝑗 . Precision refers to the fraction of

instances where we correctly identified 𝑗 out of all the cases where the algorithm declared

𝑗 . On the other hand, recall refers to the fraction of instances where we correctly identified

𝑗 out of all the cases where the true state of the world is 𝑗 .

Table 7: Precision and recall by class.

Class Precision Recall
M5S 88.17% 98.3%
PD 99.19% 85.12%

RW coalition 91.52% 97.5%
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7 Conclusion

This study aims to develop a framework to apply the spatial theory of voting to digital

trace data. This is motivated by the limitations of traditional data collection methods in

recovering citizens’ attitudes and ideological positions, which are central to this theory.

Recent advances in network ideological scaling methods have made it possible to recover

individuals’ positions on political issues and ideological scales from their digital traces.

This data, however, comes with its challenges.

First, we have shown how to recover a sample of the Italian population starting from

the data by Morales et al. (2022). The study was then divided into two parts. In the first

part, we addressed the question: “With what probability will citizens with ideal points

at 𝑥 vote for one candidate, the other, or abstain?” (McKelvey, 1975). More specifically,

we have demonstrated how to estimate a simultaneous model of voting and abstention

with digital trace data, even without information on individual-level party choices. The

empirical application was based on the results of the 2022 national election in Italy. Our

results indicate that the spatial theory of voting is appropriate to explain the election

results. Moreover, non-spatial, party-specific biases and the two ideological dimensions

are important explanatory variables. Regarding the relative importance of the ideological

dimensions for voters, economic issues are still the most important ones.

In the second part of the study, we focused on prediction. We have framed our problem

as a multi-class classification problem with aggregate data and have shown how to predict

the party choices of the electorate accurately. More precisely, we have trained a predictor

on the data from Morales et al. (2022) and the results of the 2022 national election. Our

results show that, given the ideological position of an individual, this predictor performs

exceptionally well in predicting whether she will choose M5S, PD, or a party from the

Right-Wing coalition (FdI, FI, or LN).
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Appendices
A Validity test

To understand whether this dataset captures well the distribution of the left-right and

antielite ideological dimensions in the Italian population, we can run a comparison with

the results of the 2018 and 2022 elections. The idea is to see whether there is a correlation

between the average value of the variables left-right and antielite in our dataset at the

province level and the preferences expressed by voters at the ballot box in each province.

We explain how this method works for the left-right dimension, but the same applies to

the antielite one.

We can assign two scores for how left/right-wing each province is: one based on

our Twitter users and the other based on the election results. If our dataset captures

well the variation in this ideological dimension across provinces, we would expect these

two measures to be correlated. Let’s start by computing a measure that captures how

left/right-wing a given province is based on the election results. We assign each party

a score on the left-right dimension based on the corresponding variable in the Chapel

Hill Expert Survey. Then, We assign a score to each province equal to the weighted

average of the scores of the parties, where the weights are given by the percentage of

votes obtained by each party in the given province. In other words, the score 𝑆 on the

ideological dimension 𝑔 ∈ {left-right, antielite} for province 𝑝 is computed as follows:

𝑆
𝑔
𝑝 =

∑
𝑗

𝑥
𝑔
𝑗 · %𝑣𝑜𝑡𝑒𝑠 𝑗 𝑝

where 𝑥
𝑔
𝑗 is the score on the ideological dimension 𝑔 for party 𝑗 ∀ 𝑗 = 1, . . . , 𝐽.

Then, we need a measure that captures how left/right-wing a given province is based

on our Twitter users. For this, we could compute the average value of this variable

by province. However, the result would not be representative of the actual popula-

tion. Instead, to obtain a representative measure, we need to perform post-stratification.
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Thus, for each province, we first compute the average value of the left-right dimen-

sion within each subgroup of the population11. Then, we aggregate these scores at the

province level by weighting them by the percentage of people that belong to that sub-

group in the given province. In other words, the score 𝑇 on the ideological dimension

𝑔 ∈ {left-right, antielite} for province 𝑝 is computed as follows:

𝑇
𝑔
𝑝 =

∑
𝑚∈𝑀

𝑁𝑚𝑝

𝑁𝑝

∑
𝑛 𝑥

𝑔
𝑛𝑝

𝑁𝑚𝑝

where 𝑥
𝑔
𝑛𝑝 is the score on the ideological dimension 𝑔 for Twitter user 𝑛 of province 𝑝,

𝑁𝑚𝑝 is the number of people that belong to subgroup 𝑚 in province 𝑝, 𝑁𝑝 is the total

number of people in province 𝑝, and 𝑀 the set of all population subgroups.

Table 8 reports the Pearson correlation coefficients of the correlation between the

scores computed above at the province level for each ideological dimension. Namely, we

are looking at the correlation between 𝑆𝑔 and 𝑇𝑔, ∀𝑔 ∈ {left-right, antielite}.

Table 8: Pearson correlation coefficients.

left-right antielite

2018 Elections 0.7408 0.2821

2022 Elections 0.6981 0.3607

Based on these results, it seems that the indicator we constructed based on Twitter

data is positively correlated with the indicator based on the election results on both

dimensions. Moreover, the correlation is stronger for the 𝑙𝑒 𝑓 𝑡 − 𝑟𝑖𝑔ℎ𝑡 dimension than the

𝑎𝑛𝑡𝑖𝑒𝑙𝑖𝑡𝑒 one.

11Since we have estimates for gender (male and female) and for three age groups above the voting age (19-29, 30-39, and
≥ 40) there are a total of six subgroups.
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B Inference - full model statement and estimation

B.1 Individual data

Table 9: Keywords defining parties.

Party Keywords
Fratelli d’Italia: Fratelli d’Italia, FdI, Meloni
Forza Italia: Forza Italia, FI, Berlusconi
Lega Nord: Lega Nord, LN, LSP1, Salvini
Movimento 5 Stelle: Movimento 5 Stelle, M5S, Conte
Partito Democratico: Partito Democratico, PD, Letta, pdnetwork, dem

1 “Lega per Salvini Premier”.

B.2 Aggregate data

For estimation we need 𝑃𝑛 𝑗 and Ω̃ 𝑗 for 𝑗 = 1, 2, 3, 4, 5 in addition to the likelihood function

(12). Recall that the measurement error variance 𝜎2
𝑣,𝑘𝑔 ∀𝑔 = 1, 2, ∀𝑘 = 1, 2, 3, 4, 5 is specific

to each city. We avoid the subscript 𝑐 to avoid making the notation too heavy.12 However,

this means that the covariance matrix Ω̃ 𝑗 and in turn the functional form of 𝑃𝑛 𝑗 will differ

across cities. Given the assumption that 𝜎2
𝑗 = 𝜎2 and that 𝜎𝑗 𝑘 = 0 ∀ 𝑗 , 𝑘 we have that

𝑉𝑎𝑟 (𝜂𝑘 𝑗 ) = 𝑉𝑎𝑟 (𝜖𝑛 𝑗 − 𝜖𝑛𝑘 )

= 𝑉𝑎𝑟 (𝜖𝑛 𝑗 − 𝜖𝑛𝑘 ) + 𝛽2
1𝑉𝑎𝑟 (𝑣𝑐 𝑗1 − 𝑣𝑐𝑘1) + 𝛽2

2𝑉𝑎𝑟 (𝑣𝑐 𝑗2 − 𝑣𝑐𝑘2)

= 2𝜎2 + 𝛽2
1 (𝜎2

𝑣, 𝑗1 + 𝜎2
𝑣,𝑘1) + 𝛽2

2 (𝜎2
𝑣, 𝑗2 + 𝜎2

𝑣,𝑘2) = 𝜃2
𝑘, 𝑗

12We add the subscript back in the next section which regards the estimation.

39



𝐶𝑜𝑣(𝜂𝑘 𝑗 , 𝜂𝑘𝑖) =𝐸 (𝜂𝑘 𝑗 · 𝜂𝑘𝑖) − 𝐸 (𝜂𝑘 𝑗 ) · 𝐸 (𝜂𝑘𝑖)︸               ︷︷               ︸
0

=𝐸{[(𝜖𝑛 𝑗 − 𝜖𝑛𝑘) + 𝛽1 (𝑣𝑛 𝑗1 − 𝑣𝑛𝑘1) + 𝛽2 (𝑣𝑛 𝑗2 − 𝑣𝑛𝑘2)]·

[(𝜖𝑛𝑖 − 𝜖𝑛𝑘) + 𝛽1 (𝑣𝑛𝑖1 − 𝑣𝑛𝑘1) + 𝛽2 (𝑣𝑛𝑖2 − 𝑣𝑛𝑘2)]}

=𝐸{[(𝜖𝑛 𝑗 − 𝜖𝑛𝑘) (𝜖𝑛𝑖 − 𝜖𝑛𝑘) + 𝛽1 (𝜖𝑛 𝑗 − 𝜖𝑛𝑘)(𝑣𝑛𝑖1 − 𝑣𝑛𝑘1) + 𝛽2 (𝜖𝑛 𝑗 − 𝜖𝑛𝑘)(𝑣𝑛𝑖2 − 𝑣𝑛𝑘2)+

+ 𝛽1 (𝑣𝑛 𝑗1 − 𝑣𝑛𝑘1)(𝜖𝑛𝑖 − 𝜖𝑛𝑘) + 𝛽2
1 (𝑣𝑛 𝑗1 − 𝑣𝑛𝑘1)(𝑣𝑛𝑖1 − 𝑣𝑛𝑘1) + 𝛽1𝛽2 (𝑣𝑛 𝑗1 − 𝑣𝑛𝑘1)(𝑣𝑛𝑖2 − 𝑣𝑛𝑘2)+

+ 𝛽2 (𝑣𝑛 𝑗2 − 𝑣𝑛𝑘2) (𝜖𝑛𝑖 − 𝜖𝑛𝑘) + 𝛽2𝛽2 (𝑣𝑛 𝑗2 − 𝑣𝑛𝑘2) (𝑣𝑛𝑖1 − 𝑣𝑛𝑘1) + 𝛽2
2 (𝑣𝑛 𝑗2 − 𝑣𝑛𝑘2)(𝑣𝑛𝑖2 − 𝑣𝑛𝑘2)]}

=𝐸 [(𝜖𝑛 𝑗 − 𝜖𝑛𝑘)(𝜖𝑛𝑖 − 𝜖𝑛𝑘)] + 𝐸 [𝛽2
1 (𝑣𝑛 𝑗1 − 𝑣𝑛𝑘1)(𝑣𝑛𝑖1 − 𝑣𝑛𝑘1)] + 𝐸 [𝛽2

2 (𝑣𝑛 𝑗2 − 𝑣𝑛𝑘2) (𝑣𝑛𝑖2 − 𝑣𝑛𝑘2)]

=𝐸 [𝜖𝑛 𝑗𝜖𝑛𝑖 − 𝜖𝑛 𝑗𝜖𝑛𝑘 − 𝜖𝑛𝑘𝜖𝑛𝑖 + 𝜖2
𝑛𝑘] + 𝛽2

1𝐸 [𝑣𝑛 𝑗1𝑣𝑛𝑖1 − 𝑣𝑛 𝑗1𝑣𝑛𝑘1 − 𝑣𝑛𝑘1𝑣𝑛𝑖1 + 𝑣2
𝑛𝑘1]+

+ 𝛽2
1𝐸 [𝑣𝑛 𝑗2𝑣𝑛𝑖2 − 𝑣𝑛 𝑗2𝑣𝑛𝑘2 − 𝑣𝑛𝑘2𝑣𝑛𝑖2 + 𝑣2

𝑛𝑘2]

=𝑉𝐴𝑅(𝜖𝑛𝑘) + 𝛽2
1𝑉𝐴𝑅(𝑣𝑛𝑘1) + 𝛽2

2𝑉𝐴𝑅(𝑣𝑛𝑘2)

=𝜎2 + 𝛽2
1𝜎

2
𝑣,𝑘1 + 𝛽2

2𝜎
2
𝑣,𝑘2

Ω̃1 =


𝜃2

1,2 𝜃1 𝜃1 𝜃1

𝜃2
1,3 𝜃1 𝜃1

𝜃2
1,4 𝜃1

𝜃2
1,5


, Ω̃2 =


𝜃2

2,1 𝜃2 𝜃2 𝜃2

𝜃2
2,3 𝜃2 𝜃2

𝜃2
2,4 𝜃2

𝜃2
2,5


, Ω̃3 =


𝜃2

3,1 𝜃3 𝜃3 𝜃3

𝜃2
3,2 𝜃3 𝜃3

𝜃2
3,4 𝜃3

𝜃2
3,5


,

Ω̃4 =


𝜃2

4,1 𝜃4 𝜃4 𝜃4

𝜃2
4,2 𝜃4 𝜃4

𝜃2
4,3 𝜃4

𝜃2
4,5


, Ω̃5 =


𝜃2

5,1 𝜃5 𝜃5 𝜃5

𝜃2
5,2 𝜃5 𝜃5

𝜃2
5,3 𝜃5

𝜃2
5,4



Ω̃1 =


2𝜎2 + 𝛽2

1 (𝜎2
𝑣,21 + 𝜎2

𝑣,11) + 𝛽2
2 (𝜎2

𝑣,22 + 𝜎2
𝑣,12) · · · 𝜎2 + 𝛽2

1𝜎
2
𝑣,11 + 𝛽2

2𝜎
2
𝑣,12

...
. . .

...
𝜎2 + 𝛽2

1𝜎
2
𝑣,11 + 𝛽2

2𝜎
2
𝑣,12 · · · 2𝜎2 + 𝛽2

1 (𝜎2
𝑣,51 + 𝜎2

𝑣,11) + 𝛽2
2 (𝜎2

𝑣,52 + 𝜎2
𝑣,12)


=


𝛽1 (𝜎2

𝑣,21 + 𝜎2
𝑣,11) + 𝛽2

2 (𝜎2
𝑣,22 + 𝜎2

𝑣,12) · · · 𝛽1𝜎
2
𝑣,11 + 𝛽2

2𝜎
2
𝑣,12

...
. . .

...
𝛽1𝜎

2
𝑣,11 + 𝛽2

2𝜎
2
𝑣,12 · · · 𝛽1 (𝜎2

𝑣,51 + 𝜎2
𝑣,11) + 𝛽2

2 (𝜎2
𝑣,52 + 𝜎2

𝑣,12)

 + 𝜎2


2 · · · 1
...

. . .
...

1 · · · 2


Then, for a given individual 𝑛 with 𝑘 = 1 we have that

𝑃𝑛1 =
∫ 𝑉𝑛1−𝑉𝑛2

−∞

∫ 𝑉𝑛1−𝑉𝑛3

−∞

∫ 𝑉𝑛1−𝑉𝑛4

−∞

∫ 𝑉𝑛1−𝑉𝑛5

−∞
𝜙1(𝜂12, 𝜂13, 𝜂14, 𝜂15) 𝑑𝜂12𝑑𝜂13𝑑𝜂14𝑑𝜂15 (15)

where 𝜙1 is a multivariate normal with mean vector 0 and variance-covariance matrix Ω̃1.
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Similar derivations hold for 𝑃𝑛2, 𝑃𝑛3, 𝑃𝑛4, 𝑃𝑛5.

Recall that 𝑉𝑛 𝑗 = 𝛽1 𝑧̃𝑐 𝑗1 + 𝛽2 𝑧̃𝑐 𝑗2 for individual 𝑛 living in city 𝑐, where 𝑧̃𝑐 𝑗𝑔 ∀𝑔 is also

specific to each city 𝑐 and is computed as

𝑧̃𝑛 𝑗𝑔 =
∑
𝑚∈𝑀

𝑁𝑚

𝑁
𝑧̄𝑚 𝑗𝑔 (16)

where 𝑧̄𝑚 𝑗𝑔 =
∑

𝑛 𝑧𝑛 𝑗𝑔
𝑁𝑚

(i.e. the average distance on dimension 𝑔 from party 𝑗), 𝑀 is the

set of population categories, 𝑁𝑚 the number of people the belong to category 𝑚 in city 𝑐

and 𝑁 the total number of people in city 𝑐. The parameters that need to be estimated

are 𝛽1 and 𝛽2,; 𝜎2 is normalized to 1 and 𝜎2
𝑣, 𝑗𝑔 is replaced by its sample estimate 𝜎̂2

𝑣, 𝑗𝑔

∀ 𝑗 = 1, . . . , 5 ∀𝑔, which is computed as

𝜎̂2
𝑣, 𝑗𝑔 =

∑
𝑚∈𝑀

𝑁𝑚

𝑁

∑
𝑛 (𝑧𝑛 𝑗𝑔 − 𝑧̄𝑚 𝑗𝑔)2

𝑁𝑚 − 1
(17)

B.2.1 Model estimation

The log-likelihood function that we need to maximize is the following:

𝑙 (𝜽) =
∑
𝑐∈𝐶

5∑
𝑘=1

𝑀𝑐𝑘 𝑙𝑛(𝑃𝑐𝑘 ) =
5∑

𝑘=1

∑
𝑐∈𝐶

𝑀𝑐𝑘 𝑙𝑛(𝑃𝑐𝑘 ) (18)

Start by defining the vectors 𝑴 =

©­­­­­­­­­­­­­­«

𝑀11
...

𝑀𝑐1
...

𝑀15
...

𝑀𝑐5

ª®®®®®®®®®®®®®®¬
, 𝑷 =

©­­­­­­­­­­­­­­«

𝑃11
...

𝑃𝑐1
...

𝑃15
...

𝑃𝑐5

ª®®®®®®®®®®®®®®¬
, where 𝑀𝑐𝑘 is the number of

people in city 𝑐 that voted for party 𝑘 and 𝑃𝑐𝑘 is the probability that the representative

agent from city 𝑐 votes for party 𝑘. Therefore, equation (18) can be rewritten as

𝑙 (𝜽) = 𝑴′ · (𝒍𝒏𝑷𝒄𝒌)𝒄𝒌 (19)
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where

𝑃𝑐𝑘 =
∫ 𝑉𝑐𝑘−𝑉𝑐1

−∞
· · ·

∫ 𝑉𝑐𝑘−𝑉𝑐5

−∞
𝜙𝑐𝑘 (𝜂𝑐𝑘1, · · · , 𝜂𝑐𝑘5) 𝑑𝜂𝑐𝑘5 · · · 𝑑𝜂𝑐𝑘1 (20)

and 𝜙𝑐𝑘 is a multivariate normal with mean vector
©­­­­­«
0
0
0
0

ª®®®®®¬
and variance-covariance matrix

Ω̃𝑐𝑘 =


𝜃2
𝑐𝑘1 𝜃𝑐𝑘 𝜃𝑐𝑘 𝜃𝑐𝑘

. . . 𝜃𝑐𝑘 𝜃𝑐𝑘
. . . 𝜃𝑐𝑘

𝜃2
𝑐𝑘5


.

Moreover,

• 𝑉𝑐𝑘 = 𝛽0,𝑘 + 𝛽1 𝑧̃𝑐𝑘1 + 𝛽2 𝑧̃𝑐𝑘2

• 𝜃𝑐𝑘 = 𝜎2 + 𝛽1𝜎
2
𝑣,𝑐𝑘1 + 𝛽2𝜎

2
𝑣,𝑐𝑘2

• 𝜃2
𝑐𝑘 𝑗 = 2𝜎2 + 𝛽2

1 (𝜎2
𝑣,𝑐𝑘1 + 𝜎2

𝑣,𝑐 𝑗1) + 𝛽2
2 (𝜎2

𝑣,𝑐𝑘2 + 𝜎2
𝑣,𝑐 𝑗2)

Now let

𝑽 =

©­­­­­­­­­­­­­­«

𝑉11
...

𝑉𝑐1
...

𝑉15
...

𝑉𝑐5

ª®®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­­«

𝛽0,1
...

𝛽0,1
...

𝛽0,5
...

𝛽0,5

ª®®®®®®®®®®®®®®¬
+ 𝛽1 ·

©­­­­­­­­­­­­­­«

𝑧̃111
...

˜𝑧𝑐11
...

𝑧̃151
...

𝑧̃𝑐51

ª®®®®®®®®®®®®®®¬
+ 𝛽2 ·

©­­­­­­­­­­­­­­«

𝑧̃112
...

˜𝑧𝑐12
...

𝑧̃152
...

𝑧̃𝑐52

ª®®®®®®®®®®®®®®¬
(21)

𝜽 =

©­­­­­­­­­­­­­­«

𝜃11
...

𝜃𝑐1
...

𝜃15
...

𝜃𝑐5

ª®®®®®®®®®®®®®®¬
= 𝜎2 + 𝛽1 ·

©­­­­­­­­­­­­­­«

𝜎2
𝑣,111
...

𝜎2
𝑣,𝑐11
...

𝜎2
𝑣,151
...

𝜎2
𝑣,𝑐51

ª®®®®®®®®®®®®®®¬
+ 𝛽2 ·

©­­­­­­­­­­­­­­«

𝜎2
𝑣,112
...

𝜎2
𝑣,𝑐12
...

𝜎2
𝑣,152
...

𝜎2
𝑣,𝑐52

ª®®®®®®®®®®®®®®¬
(22)
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Θ =

©­­­­­­­­­­­­­­«

𝜃2
112 𝜃2

113 𝜃2
114 𝜃2

115
...

...
...

...

𝜃2
𝑐12 𝜃2

𝑐13 𝜃2
𝑐14 𝜃2

𝑐15
...

...
...

...

𝜃2
151 𝜃2

152 𝜃2
153 𝜃2

154
...

...
...

...

𝜃2
𝑐51 𝜃2

𝑐52 𝜃2
𝑐53 𝜃2

𝑐54

ª®®®®®®®®®®®®®®¬

=2𝜎2 + 𝛽2
1 ·



©­­­­­­­­­­­­­­«

𝜎2
111 𝜎2

111 𝜎2
111 𝜎2

111
...

...
...

...

𝜎2
𝑐11 𝜎2

𝑐11 𝜎2
𝑐11 𝜎2

𝑐11
...

...
...

...

𝜎2
151 𝜎2

151 𝜎2
151 𝜎2

151
...

...
...

...

𝜎2
𝑐51 𝜎2

𝑐51 𝜎2
𝑐51 𝜎2

𝑐51

ª®®®®®®®®®®®®®®¬
+

©­­­­­­­­­­­­­­«

𝜎2
121 𝜎2

131 𝜎2
141 𝜎2

151
...

...
...

...

𝜎2
𝑐21 𝜎2

𝑐31 𝜎2
𝑐41 𝜎2

𝑐51
...

...
...

...

𝜎2
111 𝜎2

121 𝜎2
131 𝜎2

141
...

...
...

...

𝜎2
𝑐11 𝜎2

𝑐21 𝜎2
𝑐31 𝜎2

𝑐41

ª®®®®®®®®®®®®®®¬



+ 𝛽2
2 ·



©­­­­­­­­­­­­­­«

𝜎2
112 𝜎2

112 𝜎2
112 𝜎2

112
...

...
...

...

𝜎2
𝑐12 𝜎2

𝑐12 𝜎2
𝑐12 𝜎2

𝑐12
...

...
...

...

𝜎2
152 𝜎2

152 𝜎2
152 𝜎2

152
...

...
...

...

𝜎2
𝑐52 𝜎2

𝑐52 𝜎2
𝑐52 𝜎2

𝑐52

ª®®®®®®®®®®®®®®¬
+

©­­­­­­­­­­­­­­«

𝜎2
122 𝜎2

132 𝜎2
142 𝜎2

152
...

...
...

...

𝜎2
𝑐22 𝜎2

𝑐32 𝜎2
𝑐42 𝜎2

𝑐52
...

...
...

...

𝜎2
112 𝜎2

122 𝜎2
132 𝜎2

142
...

...
...

...

𝜎2
𝑐12 𝜎2

𝑐22 𝜎2
𝑐32 𝜎2

𝑐42

ª®®®®®®®®®®®®®®¬



(23)
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𝐴 =

©­­­­­­­­­­­­­­«

𝑉11 −𝑉12 𝑉11 −𝑉13 𝑉11 −𝑉14 𝑉11 −𝑉15
...

...
...

...

𝑉𝑐1 −𝑉𝑐2 𝑉𝑐1 −𝑉𝑐3 𝑉𝑐1 −𝑉𝑐4 𝑉𝑐1 −𝑉𝑐5
...

...
...

...

𝑉15 −𝑉11 𝑉15 −𝑉12 𝑉15 −𝑉13 𝑉15 −𝑉14
...

...
...

...

𝑉𝑐5 −𝑉𝑐1 𝑉𝑐5 −𝑉𝑐2 𝑉𝑐5 −𝑉𝑐3 𝑉𝑐5 −𝑉𝑐4

ª®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­«

𝑉11 𝑉11 𝑉11 𝑉11
...

...
...

...

𝑉𝑐1 𝑉𝑐1 𝑉𝑐1 𝑉𝑐1
...

...
...

...

𝑉15 𝑉15 𝑉15 𝑉15
...

...
...

...

𝑉𝑐5 𝑉𝑐5 𝑉𝑐5 𝑉𝑐5

ª®®®®®®®®®®®®®®¬
−

©­­­­­­­­­­­­­­«

𝛽0,2 𝛽0,3 𝛽0,4 𝛽0,5
...

...
...

...

𝛽0,2 𝛽0,3 𝛽0,4 𝛽0,5
...

...
...

...

𝛽0,1 𝛽0,2 𝛽0,3 𝛽0,4
...

...
...

...

𝛽0,1 𝛽0,2 𝛽0,3 𝛽0,4

ª®®®®®®®®®®®®®®¬
−

−𝛽1 ·

©­­­­­­­­­­­­­­«

𝑧̃121 𝑧̃131 𝑧̃141 𝑧̃151
...

...
...

...

𝑧̃𝑐21 𝑧̃𝑐31 𝑧̃𝑐41 𝑧̃𝑐151
...

...
...

...

𝑧̃111 𝑧̃121 𝑧̃131 𝑧̃141
...

...
...

...

𝑧̃𝑐11 𝑧̃𝑐21 𝑧̃𝑐31 𝑧̃𝑐41

ª®®®®®®®®®®®®®®¬
− 𝛽2 ·

©­­­­­­­­­­­­­­«

𝑧̃122 𝑧̃132 𝑧̃142 𝑧̃152
...

...
...

...

𝑧̃𝑐22 𝑧̃𝑐32 𝑧̃𝑐42 𝑧̃𝑐152
...

...
...

...

𝑧̃112 𝑧̃122 𝑧̃132 𝑧̃142
...

...
...

...

𝑧̃𝑐12 𝑧̃𝑐22 𝑧̃𝑐32 𝑧̃𝑐42

ª®®®®®®®®®®®®®®¬

(24)

Finally, we can compute 𝑃𝑐𝑘 ∀𝑐, 𝑘 as

𝑃𝑐𝑘 = Φ̃𝑐𝑘 (𝐴𝑐1, · · · , 𝐴𝑐4) (25)

where Φ̃𝑐𝑘 is the Cumulative Distribution Function of a Multivariate Normal with

mean vector 0 and variance-covariance matrix Ω̃𝑐𝑘 .

C Prediction - full model statement and estimation

Let 𝑠𝑐 𝑗 be the share of votes that party 𝑗 received in the city 𝑐. The corresponding share

of votes predicted by the model is
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𝑠̂𝑐 𝑗 (𝜽) =
∑
𝑚∈𝑀

𝑁𝑐𝑚

𝑁𝑐

∑
𝑛 𝑃𝑛 𝑗

𝑁𝑐𝑚
,

where 𝑁𝑐 is the number of people in city 𝑐. Let 𝒔 be the vector of data moment and

𝒔̂ the vector of simulated moments. We can define 𝒔 =

©­­­­­­­­­­­­­­«

𝑠11
...

𝑠𝑐1
...

𝑠15
...

𝑠𝑐5

ª®®®®®®®®®®®®®®¬
and 𝒔̂ =

©­­­­­­­­­­­­­­«

𝑠̂11
...

𝑠̂𝑐1
...

𝑠̂15
...

𝑠̂𝑐5

ª®®®®®®®®®®®®®®¬
. Moreover,

let the weighting matrix 𝑊 =



𝑤11 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 𝑤𝑐1 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 𝑤15 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 𝑤𝑐5


where all the off-main

diagonal elements are 0 and 𝑤𝑐 𝑗 = 𝑁𝑐
𝑁 · 1

5 ∀𝑐, 𝑗 , with 𝑁 being the size of the Italian voting

population.

45



References

R. Bakker, S. Jolly, and J. Polk. Complexity in the european party space: Exploring

dimensionality with experts. European Union Politics, 13(2):219–245, 2012.

P. Barberá. Birds of the same feather tweet together. bayesian ideal point estimation

using twitter data. 2015.

K. Benoit and M. Laver. The dimensionality of political space: Epistemological and

methodological considerations. European Union Politics, 13(2):194–218, 2012.

D. Black et al. The theory of committees and elections. 1958.

G. Bonomi, N. Gennaioli, and G. Tabellini. Identity, Beliefs, and Political Conflict*. The

Quarterly Journal of Economics, 136(4):2371–2411, 09 2021. ISSN 0033-5533. doi:

10.1093/qje/qjab034. URL https://doi.org/10.1093/qje/qjab034.

P. E. Converse. The nature of belief systems in mass publics (1964). Critical review, 18

(1-3):1–74, 2006.

O. Danieli, N. Gidron, S. Kikuchi, and R. Levy. Decomposing the rise of the pop-

ulist radical right. 2022. ISSN 1556-5068. doi: 10.2139/ssrn.4255937. URL

https://www.ssrn.com/abstract=4255937.

O. A. Davis, M. J. Hinich, and P. C. Ordeshook. An expository development of a mathe-

matical model of the electoral process. American political science review, 64(2):426–448,

1970.

J. K. Dow. A spatial analysis of the 1989 chilean presidential election. 17

(1):61–76, 1998. ISSN 0261-3794. doi: 10.1016/S0261-3794(97)00050-4. URL

https://www.sciencedirect.com/science/article/pii/S0261379497000504.

A. Downs. An economic theory of political action in a democracy. Journal of political

economy, 65(2):135–150, 1957.

46



J. M. Enelow and M. J. Hinich. The spatial theory of voting: An introduction. CUP

Archive, 1984.

J. M. Enelow and M. J. Hinich. Estimating the parameters of a spatial model of elections:

An empirical test based on the 1980 national election study. Political Methodology, 11

(3/4):249–268, 1985. ISSN 01622021. URL http://www.jstor.org/stable/41289343.

V. Galasso, M. Morelli, T. Nannicini, and P. Stanig. The populist dynamic: Experi-

mental evidence on the effects of countering populism. 2024. ISSN 1556-5068. doi:

10.2139/ssrn.4727221. URL https://www.ssrn.com/abstract=4727221.

N. Gennaioli and G. Tabellini. Identity politics, 2023. URL

https://papers.ssrn.com/abstract=4410239.

C. Hare and K. T. Poole. The polarization of contemporary american politics, 2013. URL

https://papers.ssrn.com/abstract=3363227.

C. Hare and K. T. Poole. Psychometric methods in political science. In The

Wiley Handbook of Psychometric Testing, pages 901–931. John Wiley & Sons,

Ltd, 2018. ISBN 978-1-118-48977-2. doi: 10.1002/9781118489772.ch28. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118489772.ch28. Sec-

tion: 28 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118489772.ch28.

C. Hare, T.-P. Liu, and R. N. Lupton. What ordered optimal classification reveals

about ideological structure, cleavages, and polarization in the american mass pub-

lic. 176(1):57–78, 2018. ISSN 1573-7101. doi: 10.1007/s11127-018-0540-6. URL

https://doi.org/10.1007/s11127-018-0540-6.

R. S. Hartman. A note on the use of aggregate data in individual choice models: Dis-

crete consumer choice among alternative fuels for residential appliances. Journal of

Econometrics, 18(3):313–335, 1982.

M. J. Hinich and M. C. Munger. Analytical politics. Cambridge University Press, 1997.

H. Hotelling. Stability in competition. Economic Journal, 39(153):41–57, 1929.

47



W. G. Jacoby and D. A. Armstrong II. Bootstrap confidence regions for multidimensional

scaling solutions. 58(1):264–278, 2014. ISSN 1540-5907. doi: 10.1111/ajps.12056.

URL https://onlinelibrary.wiley.com/doi/abs/10.1111/ajps.12056. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/ajps.12056.

S. Jolly, R. Bakker, L. Hooghe, G. Marks, J. Polk, J. Rovny, M. Steenbergen, and M. A.

Vachudova. Chapel hill expert survey trend file, 1999–2019. Electoral studies, 75:

102420, 2022.

E. Lancsar, D. G. Fiebig, and A. R. Hole. Discrete choice experiments: a guide to model

specification, estimation and software. Pharmacoeconomics, 35:697–716, 2017.

S. Lipovetsky. Analyzing spatial models of choice and judgment, second edition: by

david a. armstrong II, ryan bakker, royce carroll, christopher hare, keith t. poole,

and howard rosenthal. CRC press. taylor & francis group, chapman and hall, boca

raton, FL, 2021, ISBN 978-1-138-71533-2, 320 pp., $63.96 (hbk). 64(1):139–143,

2022. ISSN 0040-1706, 1537-2723. doi: 10.1080/00401706.2021.2020519. URL

https://www.tandfonline.com/doi/full/10.1080/00401706.2021.2020519.

J. Lucas, R. M. McGregor, and A. Bridgman. Spatial voting in non-partisan cities: A case

study. 82:102599, 2023. ISSN 0261-3794. doi: 10.1016/j.electstud.2023.102599. URL

https://www.sciencedirect.com/science/article/pii/S0261379423000215.

R. Magni-Berton and S. Panel. Manifestos and public opinion: testing the relevance of

spatial models to explain salience choices. 16(5):783–804, 2018. ISSN 1740-388X. doi:

10.1057/s41295-017-0101-2. URL https://doi.org/10.1057/s41295-017-0101-2.

I. McAllister, J. Sheppard, and C. Bean. Valence and spatial explanations for voting in

the 2013 australian election. Australian Journal of Political Science, 50(2):330–346,

2015.

N. McCarty, K. T. Poole, and H. Rosenthal. Polarized America: The dance of ideology

and unequal riches. mit Press, 2016.

48



D. McFadden. Conditional logit analysis of qualitative choice behavior. In P. Zarembka,

editor, Fontiers in Econometrics, pages 105–142. Academic press, New York, 1974.

R. D. McKelvey. Policy related voting and electoral equilibrium. Econometrica: Journal

of the Econometric Society, pages 815–843, 1975.

P. R. Morales, J.-P. Cointet, and G. M. n. Zolotoochin. Unfolding the dimensionality

structure of social networks in ideological embeddings. In Proceedings of the 2021

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining, ASONAM ’21, page 333–338, New York, NY, USA, 2022. Association for

Computing Machinery. ISBN 9781450391283. doi: 10.1145/3487351.3489441. URL

https://doi.org/10.1145/3487351.3489441.

D. R. Musicant, J. M. Christensen, and J. F. Olson. Supervised learning by

training on aggregate outputs. In Proceedings of the 2007 Seventh IEEE In-

ternational Conference on Data Mining, ICDM ’07, page 252–261, USA, 2007a.

IEEE Computer Society. ISBN 0769530184. doi: 10.1109/ICDM.2007.50. URL

https://doi.org/10.1109/ICDM.2007.50.

D. R. Musicant, J. M. Christensen, and J. F. Olson. Supervised learning by training on

aggregate outputs. In Seventh IEEE International Conference on Data Mining (ICDM

2007), pages 252–261. IEEE, 2007b.

K. T. Poole. Spatial models of parliamentary voting. Cambridge University Press, 2005.

K. T. Poole and H. Rosenthal. The polarization of american politics. The journal of

politics, 46(4):1061–1079, 1984.

K. T. Poole and H. Rosenthal. A spatial model for legislative roll call analysis. American

journal of political science, pages 357–384, 1985.

K. T. Poole and H. Rosenthal. Patterns of congressional voting. American journal of

political science, pages 228–278, 1991.

K. T. Poole and H. Rosenthal. Congress: A political-economic history of roll call voting.

Oxford University Press, USA, 2000.

49



K. T. Poole and H. L. Rosenthal. Ideology and congress, volume 1. Transaction Publishers,

2011.

K. M. Quinn, A. D. Martin, and A. B. Whitford. Voter choice in multi-party democracies:

A test of competing theories and models. 43(4):1231–1247, 1999. ISSN 0092-5853.

doi: 10.2307/2991825. URL https://www.jstor.org/stable/2991825. Publisher:

[Midwest Political Science Association, Wiley].

N. Schofield, A. D. Martin, K. M. Quinn, and A. B. Whitford. Multiparty electoral

competition in the netherlands and germany: A model based on multinomial probit. 97

(3):257–293, 1998. ISSN 0048-5829. URL https://www.jstor.org/stable/30024432.

Publisher: Springer.

B. Shor and N. McCarty. The ideological mapping of american legislatures, 2011. URL

https://papers.ssrn.com/abstract=1676863.

A. Smithies. Optimum location in spatial competition. Journal of Political Economy, 49

(3):423–439, 1941.

D. Stiers. Spatial and valence models of voting: The effects of the political con-

text. 80:102549, 2022. ISSN 0261-3794. doi: 10.1016/j.electstud.2022.102549. URL

https://www.sciencedirect.com/science/article/pii/S0261379422001056.

C. L. Struthers, C. Hare, and R. Bakker. Bridging the pond: measuring policy positions

in the united states and europe. 8(4):677–691, 2020. ISSN 2049-8470, 2049-8489. doi:

10.1017/psrm.2019.22.

P. W. Thurner. The empirical application of the spatial theory of voting in multiparty

systems with random utility models. Electoral Studies, 19(4):493–517, 2000.

P. W. Thurner and A. Eymann. Policy-specific alienation and indifference in the cal-

culus of voting: A simultaneous model of party choice and abstention. 102(1):51–77,

2000. ISSN 0048-5829. URL https://www.jstor.org/stable/30026136. Publisher:

Springer.

50



K. E. Train. Discrete choice methods with simulation. Cambridge university press, 2009.

Z. Wang, S. Hale, D. I. Adelani, P. Grabowicz, T. Hartman, F. Flöck, and D. Jurgens.

Demographic inference and representative population estimates from multilingual social

media data. In The World Wide Web Conference, WWW ’19, page 2056–2067, New

York, NY, USA, 2019a. Association for Computing Machinery. ISBN 9781450366748.

doi: 10.1145/3308558.3313684. URL https://doi.org/10.1145/3308558.3313684.

Z. Wang, S. Hale, D. I. Adelani, P. Grabowicz, T. Hartman, F. Flöck, and D. Jurgens.

Demographic inference and representative population estimates from multilingual social

media data. In The world wide web conference, pages 2056–2067, 2019b.

J. Wheatley and F. Mendez. Reconceptualizing dimensions of political competition in

europe: A demand-side approach. British Journal of Political Science, 51(1):40–59,

2021.

51


